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This course has two specific goals:

() To introduce students to concepts of stresses and
strain; shearing force and bending; as well as torsion
and deflection of different structural elements.

(i) To develop theoretical and analytical skills relevant
to the areas mentioned Iin (i) above.



COURSE OUTLINE

TITLE CONTENTS

I DEFORMATION OF Introduction to Rigid and Deformable bodies —
SOLIDS properties, Stresses - Tensile, Compressive and
Shear, Deformation of simple and compound bars
under axial load — Thermal stress — Elastic constants
— Volumetric Strain, Strain energy and unit strain
energy

IT TORSION Introduction - Torsion of Solid and hollow circular
bars — Shear stress distribution — Stepped shaft —
Twist and torsion stiffness — Compound shafts —
Springs — types - helical springs — shear stress and
deflection in springs

I11 BEAMS Types : Beams , Supports and Loads — Shear force
and Bending Moment — Cantilever, Simply
supported and Overhanging beams — Stresses in
beams — Theory of simple bending — Shear stresses in
beams — Evaluation of T, ‘C’ & ‘T’ sections




COURSE OUTLINE

UNIT TITLE CONTENTS

IV DEFLECTION OF Introduction - Evaluation of beam deflection and
BEAMS slope: Macaulay Method and Moment-area Method
\Y% ANALYSIS OF Biaxial state of stresses — Thin cylindrical and

STRESSES IN TWO spherical shells — Deformation in thin cylindrical and
DIMENSIONS spherical shells — Principal planes and stresses —
Mohr’s circle for biaxial stresses — Maximum shear

stress - Strain energy in bending and torsion

TEXT BOOKS
*Bansal, R.K., A 7ext Book of Strength of Materials, Lakshmi Publications Pvt. Limited, New Delhi, 1996
*Ferdinand P.Beer, and Rusell Johnston, E., Mechanics of Materials, SI Metric Edition, McGraw Hill, 1992




Upon successful completion of this course, students should be
able to:

() Understand and solve simple problems involving stresses and
strain in two and three dimensions.

(i) Understand the difference between statically determinate and
indeterminate problems.

(iv) Analyze stresses in two dimensions and understand the
concepts of principal stresses and the use of Mohr circles to
solve two-dimensional stress problems.



(v) Draw shear force and bending moment diagrams of simple
beams and understand the relationships between loading

Intensity, shearing force and bending moment.

(vi) Compute the bending stresses in beams with one or two

materials.

(vil) Calculate the deflection of beams using the direct integration
and moment-area method.



The course will be taught via Lectures. Lectures will also involve
the solution of tutorial questions. Tutorial questions are designed
to complement and enhance both the lectures and the students

appreciation of the subject.

Course work assignments will be reviewed with the students.



UNITS:

British
1. Force Ib, kip, Ton
1 Kip= 1000 Ib
I ton=2240 1b
2. Long in, ft
1f=121in
3. Stress psi. ksi
p kip
in” "in’

MPa =

GPa=10"Pa=10° N/mm? x

Metric

g, kg,

1 kg=1000¢g
Ton = 1000 kg

m, cm, mm

1 m=100cm
l em=10mm
1 m=1000 mm
lin=254cm

N
nm

Pa(

- ). MPa, GPa

MPa = 10° Pa = 10° N/mm? =

S.1.

N, kN

1 kKN = 1000 N
lkg= 10N

m, cm, mm
1m= 100 cm
lem=10 mm

1 m=1000 mm
lin=2.54 cm

2

10002 227
s
1 :103 N . 1
2 2
1000> 7 mm 10002
m

GPa = kN/mm°







When a force iIs transmitted through a body, the body

tends to change its shape or deform. The body is
said to be strained.

Direct Stress = Applied Force (F)
Cross Sectional Area (A)

Units: Usually N/m? (Pa), N/mm?, MN/m?, GN/m?
or N/cm?

Note: 1 N/mm2= 1 MN/m? =1 MPa



Direct Stress Contd.

» Direct stress may be tensile or compressive and
result from forces acting perpendicular to the
plane of the crosg-section

> Tension




Tension and Compression




Direct or Normal Strain

» When loads are applied to a body, some deformation will occur
resulting to a change in dimension.

» Consider a bar, subjected to axial tensile loading force, F. If the bar
extension is dl and its original length (before loading) is L, then tensile

e _

L di

A

[
»

Direct Strain (¢ ) = Change in Length
Original Length

l.e. € =dl/L




As strain Is a ratio of lengths, it is dimensionless.

Similarly, for compression Dby amount, dl:
Compressive strain = - dl/L

Note: Strain is positive for an increase in dimension
and negative for a reduction in dimension.



Shear stresses are produced by equal and opposite parallel
forces not in line.

The forces tend to make one part of the material slide over the
other part.

Shear stress is tangential to the area over which it acts.

Forces acting parallel
to the area concerned

—_—

1=

(



The strength of a material is a measure of the
stress that it can take when in use. The ultimate
strength is the measured stress at failure but this
is not normally used for design because safety
factors are required. The normal way to define a
safety factor is :

stress at failure Ultimate stress

safety factor = =
stress when loaded Permissibl e stress



We must also define strain. In engineering this is not a
measure of force but is a measure of the deformation
produced by the influence of stress. For tensile and
compressive loads:

increase in length x

strain & =
original length L

Strain is dimensionless, i.e. it is not measured in metres,
killogrammes etc.
shear displacement x

width L

shear strain y =

For shear loads the strain is defined as the angle y This
is measured in radians



Shear stress and strain
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Area resisting
shear Shear displacement (x)

—
: L Shear strain is angle y
Shear force l




Shear Stress and Shear Strain Contd.

D9
A ' F
L
A B
Shear strain is the distortion produced by shear stress on an element
or rectangular block as above. The shear strain, Y  (gamma) Is

given as:

y = x/L= tan¢




For small : & y = ¢

Shear strain then becomes the change in the right
angle.

It IS dimensionless and Is measured In radians.



Elastic and Plastic deformation
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Permanent
Deformation

Elastic deformation Plastic deformation




If the strain is "elastic" Hooke's law may be used to
define

Stress W L
Youngs Modulus E = = X

Strain X A

Young's modulus is also called the modulus of
elasticity or stiffness and is a measure of how much
strain occurs due to a given stress. Because strain is

dimensionless Young's modulus has the units of
stress or pressure




How to calculate deflection if the proof stress is
applied and then partially removed.

If a sample is loaded up to the 0.2% proof stress and then unloaded to a stress s
the strain x = 0.2% + s/E  where E 1s the Young’s modulus

Yield :
Plastic
0.2% proc* ~*-~ss \ i /
S V \ Failure
Stress
l"'
+—>r2eg > Strain

0.002 s/E



Hydrostatic stress refers to tensile or
compressive stress in all dimensions within or
external to a body.

Hydrostatic stress results in change in volume
of the material.

Consider a cube with sides X, y, z. Let dx, dy,
and dz represent increase In length Iin all

directions.
l.e. new volume = (x + dx) (y + dy) (z + dz)



Neglecting products of small quantities:
New volume =xyz+zydx+xzdy+xydz
Original volume = xy z
=zydx+xzdy+Xxydz
Volumetric straingy =zydx + xzdy + Xy dz
£, XYyZ
e, =dx/x +dyly + dz/z




All solid materials deform when they are
stressed, and as stress IS Increased,
deformation also increases.

If a material returns to its original size and
shape on removal of load causing
deformation, it is said to be elastic.

If the stress is steadily increased, a point is
reached when, after the removal of load, not
all the induced strain I1s removed.

This Is called the elastic limit.




States that providing the limit of proportionality of a
material Is not exceeded, the stress is directly
proportional to the strain produced.

If a graph of stress and strain is plotted as load is
gradually applied, the first portion of the graph will
be a straight line.

The slope of this line is the constant of
proportionality called modulus of Elasticity, E or
Young’'s Modulus.

It IS a measure of the stiffness of a material.



- Direct stress o
Modulus of Elasticity, E = = —
&

Direct strain

Shear stress
Also: For Shear stress: Modulus of rigidity or shear modulus, G = =

T
Shear strain y

Also: Volumetric strain, & IS proportional to hydrostatic
stress, o within the elastic range

l.e. : o / = — K called bulk modulus.



Stress-Strain Relations of Mild Steel

Wtimate o maximum stress o M MY{\
J ield ( ~— ——5tress ol ;
_pp;“m e W foilure ('S‘Ut\mr, Poink)
" T T = — — — ~Lower yield point -
%\ostk Limit
Limit of proporlionality
Stress o) g
4 't ‘C‘ S Kd_ : !
o L&M&m e Qg L. = r; Lo A“Mw
: lM-c.KsL.g'
>
Srain(e)

Fig: Behaviour of mild-steel rod under tension.

%




From the above equations:

This equation for extension Is
very important



Extension For Bar of Varying Cross Section
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The load which any member of a machine carries
Is called working load, and stress produced by this
load is the working stress.

Obviously, the working stress must be less than
the yield stress, tensile strength or the ultimate
stress.

This working stress is also called the permissible
stress or the allowable stress or the design stress.



Some reasons for factor of safety include the
Inexactness or inaccuracies in the estimation of
stresses and the non-uniformity of some

materials.

Ultimate or yield stress

Factor of safety =
Design or working stress

Note: Ultimate stress is used for materials e.qg.
concrete which do not have a well-defined yield point,
or brittle materials which behave in a linear manner up
to failure. Yield stress is used for other materials e.g.
steel with well defined yield stress.



Stress up to lim it of proportionality
(a) Modulus of Elasticity, E =

Strain

(b) Yield Stress or Proof Stress (See below)

Increase in gauge length
(c) Percentage elongation = x 100
Original gauge length

- Original area — area at fracture
(d) Percentage reduction in area = x 100
Original area

Maximum load

(e) Tensile Strength = — :
Original cross sectional area

The percentage of elongation and percentage reduction in area give an indication of the

ductility of the material i.e. its ability to withstand strain without fracture occurring.



High carbon steels, cast iron and most of the non-
ferrous alloys do not exhibit a well defined yield as
IS the case with mild steel.

For these materials, a limiting stress called proof
stress Is specified, corresponding to a non-
proportional extension.

The non-proportional extension is a specified
percentage of the original length e.g. 0.05, 0.10,
0.20 or 0.50%.



Determination of Proof Stress

i
A ‘

Stress

> Strain

The proof stress is obtained by drawing AP parallel to the initial slope of the
stress/strain graph, the distance, OA being the strain corresponding to the
required non-proportional extension e.g. for 0.05% proof stress, the strain is
0.0005.




Thermal Strain
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Thermal Strain Contd.
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t states that the effects of several actions taking
place simultaneously can be reproduced exactly
oy adding the effect of each action separately.

The principle is general and has wide applications
and holds true If:

() The structure is elastic
(i) The stress-strain relationship is linear
(i) The deformations are small.




General Stress-Strain Relationships

(a} (b)




Relationship between Elastic Modulus (E) and Bulk
Modulus, K
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Compound Bars
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Note:

Free expansions in bars (1) and (2) are La,T and La,T

Due to end fixing force, F: the decrease in length of bar (1) is

respectively.

FL FL
—— and the increase in length of (2) is :
AE, 252 [ ) |,
At Equilibrium: | > e,
FL :
La,T-——=»La,T+ < >
AE, A,E, (a) ¢ T
. | - pro—
ie F[ + ]:T(al_az) ..................... E
AE, A,E, ot
E,+ AE | 2 oy :
22 171 i :
i.e. o A VIE1E2A1A2 T(a,-a,) :
F— 1 P e—F
T(al_az)AzElEz
0'1: E
AE, + AE, F— 2 F > -
FL
(c) 2
- _T(al—aZ)AlElEz X AE,
’ AE, + AE,

As a result of Force, F, bar (1) will be in compression while (2) will be in tension.



A steel tube having an external diameter of 36 mm and an
Internal diameter of 30 mm has a brass rod of 20 mm
diameter inside it, the two materials being joined rigidly at
their ends when the ambient temperature is 18 °C.
Determine the stresses in the two materials: (a) when the
temperature is raised to 68 °C (b) when a compressive
load of 20 kN is applied at the increased temperature.



For brass: Modulus of elasticity = 80 GN/ms;
Coefficient of expansion =17 x 10 -6 /°C

For steel: Modulus of elasticity = 210 GN/m?;
Coefficient of expansion = 11 x 10 -6 /°C



Solution
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Solution Contd.
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5444 71N
311.02 mm°’

Stress in steel tube

=1751N /mm®=1751MN /m*(Tension)

5444 71N
31416 mm

Stress in brass rod

~=17.33N /mm’ =17.33MN /m”(Compression)

(b) Stresses due to compression force, F’ of 20 kN

F'E, 20 x 10°N x 210 x10°N /m” ) _
o, = = —=46.44MN Im“(Compression)
E.A +E,A, 0653142+ 0251327 x 10
F'E, 20 x 10°N x 80 x 10°N /m’
O = =

.~ =17.69MN /mZ(Compression)
E.A +E A, 0.653142 + 0.251327 x 10

Resultant stress in steel tube = - 46.44 + 17.51 = 28.93 MN/m* (Compression)

Resultant stress in brass rod = -17.69 - 17.33 = 35.02 MN/m~ (Compression)



A composite bar, 0.6 m long comprises a steel bar 0.2
m long and 40 mm diameter which is fixed at one end
to a copper bar having a length of 0.4 m.

Determine the necessary diameter of the copper bar
In order that the extension of each material shall be
the same when the composite bar is subjected to an
axial load.

What will be the stresses in the steel and copper
when the bar is subjected to an axial tensile loading of
30 kKN? (For steel, E = 210 GN/m?; for copper, E = 110
GN/m?)



Solution




Solution Concluded




If a material is strained by a gradually applied load,
then work is done on the material by the applied
load.

The work Is stored in the material In the form of
strain energy.

If the strain Is within the elastic range of the
material, this energy Is not retained by the material
upon the removal of load.



Elastic Strain Energy Contd.
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W =U-=1/2 P dl (1)

Stress, 0 =P/A i.e P=0 A

Strain = Stress/E

i,edl/L = 9 /E, dl= (9 L)IE L= original length
Substituting for P and dlin Eqn (1) gives:

W=U=1/2% A.(° L)E = P ?2ExAL

AL isthe volume of the bar.

. O 2
i.e U = /[2E X Volume

The units of strain energy are same as those of work i.e. Joules. Strain energy

(o)
per unit volume, ?I2E is known as resilience. The greatest amount of energy that can

O
stored in a material without permanent set occurring will be when is equal to the

elastic limit stress.






Torsion of circular shafts
Definition of Torsion: Consider a shaft ngidly clamped at one end and twisted at the

other end by a torque T = F.d applied in a plane perpendicular to the axis of the bar such
a shaft 1s said to be in torsion.

§ ;
L.Jé. | E\I.

T=Fd

d

rs

Effects of Torsion: The effects of a torsional load applied to a bar are

(1) To impart an angular displacement of one end cross — section with respect to the
other end.

(11) To setup shear stresses on any cross section of the bar perpendicular to its axis,




Assumption:

(1) The materiel 15 homogenous 1.e of uniform elastic properties exists throughout the
material.

(11) The material 15 elastic, follows Hook's law, with shear stress proportional to shear
strain.

(111) The stress does not exceed the elastic limit.
(1v) The circular section remains circular

(v} Cross section remain plane.

(v1) Cross section rotate as 1if rigid 1.e. every diameter rotates through the same angle.




Consider now the solid circular shaft of radius R subjected to a torque T at one end, the
other end being fixed Under the action of this torque a radial line at the free end of the
shaft twists through an angle q , point A moves to B, and AB subtends an angle * g ' at
the fixed end. This is then the angle of distortion of the shaft i.e the shear strain.

Since angle in radius = arc / Radius
arc AB = Rq
=L g [since L and g also constitute the arc AB]
Thus, g=Rg /L (1)
From the definition of Modulus of rigidity or Modulus of elasticity in shear

_ shear stress{T)
shear straing ¥
where v isthe shear stress set up at radius R,

Then ET=';.'

Equating the egquations (1) and (2) we get ? = é
% = ?[: TT]WI"IEIE T'is the shear stress at any radius r.

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to
shear stress t'.




The force set up on each element
= slress x area
=1t x 2pr dr (approximately)
This force will produce a moment or torque about the center axis of the shaft.
=t.2prdr.r
=2pt.ri.dr
T= TQ;-::r'r2 dr
The total torque T on the section, will be the sum of all the contributions. 0

Since t' 15 a function of r, because it varies with radius so writing down t' in terms of r
from the equation (1).




. . _ E8r
ie T'=

R
wegetT = _[2 2% 3qr
o L

T =

L

_ 2mc6 [H_‘]"
I
2R
a

F
2rs8 _[r3|:lr
1]

3

] now substituting R = ds2

R |
kJ
4,

|—|g I—‘Q I“Q |—|g

4

since = J the polarmomentof mertia

T _ =8

TITTT

if we combine the equation no.{1) and (2] we get

Where
T = applied external Torgue, which is constant over Length L;

J = Polar moment of Inertia

ad .
=" for =solid shaft
32

_mD* - d%)
=" " fora hallow shaft.
32 [ D = Outside diameter ; d = inside diameter ]

G = Modules of rigidity {or Modulus of elasticity in shear)
g = It is the angle of twist in radians on a length L.

Tensional Stiffness: The tensional stiffness k is defined as the torgue per radius twist




Distribution of shear stresses in circular Shafts subjected to torsion :

The simple torsion equation 15 written as

T 1 G#
Joror
or
_ Gér
L

This states that the shearing stress varies directly as the distance *r' from the axis of the
shaft and the following is the stress distribution in the plane of cross section and also the

complementary shearing stresses in an axial plane.

oy €

(Solid Shaft) {Hollow Shaft)

Hence the maximum strear stress occurs on the outer surface of the shaft wherer=R

The value of maximum shearing stress in the solid circular shaft can be determined as




where d=diameter of solid shaft

16T
O T _m = —=
max ﬂ.d

From the above relation, following conclusion can be drawn
(D) tma wT

(i1) t g 0 1/d°

Power Transmitted by a shaft:

In practical application, the diameter of the shaft must sometimes be calculated from the
power which it 18 required to transmut.

Given the power required to be transmitted, speed in rpm *N' Torque T, the formula
connecting

These quantities can be derived as follows
F=Tuw

= TEESIN watts

_ 2nNT

 B0x10° (ko)

Torsional stiffness: The torsional stiffness k 1s defined as the torque per radian twist .




TORSION OF HOLLOW SHAFTS:

From the torsion of solid shafts of circular x — section , it is seen that only the material
atthe outer surface of the shaft can be stressed to the limit assigned as an allowable
working stresses. All of the material within the shaft will work at a lower stress and is not
being used to full capacity. Thus, in these cases where the weight reduction is important, it
Is advantageous to use hollow shafts. In discussing the torsion of hollow shafts the same
assumptions will be made as in the case of a solid shaft. The general torsion equation as we
have applied in the case of torsion of solid shaft will hold good

T _71_0G#
Jor o
For the hollow shaft
4 _ 44
J= % where Dy=0utside diameter
d=Inside diameter
1
Let dizi'DD
_ 16T
Tmas™ | oig 0, (1)
: | TDy /2
max™ Ihallom pid 4 4
.t -
=00 -4
i} 16T Dy
D, [1 - (d/D, )“]
16T 16T

= =1.066. —
??DDE l-] _ (1 qu-l ??DD3 |:2:|



Closed Coiled helical springs subjected to axial loads:

Definition: A spring may be defined as an elastic member whose primary function is to
deflect or distort under the action of applied load: it recovers its original shape when load
is released.

ar

Springs are energy absorbing units whose function is to store energy and to restore it
slowly or rapidly depending on the particular application.

Important tvpes of springs are:
There are various types of springs such as
(i) helical spring: They are made of wire coiled into a helical form, the load being

applied along the axis of the helix. In these type of springs the major stresses 18 torsional
shear stress due to twisting. They are both used in tension and compression.

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and
loaded in torsion.

- In this the major stresses are tensile and compression due to bending. -




(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so
as to obtain greater efficiency . Leafl springs may be full elliptic, semi elliptic or
cantilever types, In these type of springs the major stresses which come into picture are
tensile & compressive.

These type of springs are used in the automobile suspension system.
Uses of springs :

(a) To apply forces and to control motions as in brakes and clutches.

(b) To measure forces as in spring balance.

(¢} To store energy as in clock springs.

(d) To reduce the effect of shock or impact loading as in carriage springs.

(e} To change the vibrating characteristics of a member as inflexible mounting of motors.




Derivation of the Formula :
In order to derive a necessary formula which governs the behaviour of springs,
consider a closed coiled spring subjected to an axial load W.

Let inins i deiiie
W = axial load

D = mean coil diameter

d = diameter of spring wire

n = number of active coils

C =spring index = D / d For circular wires
| = length of spring wire

G = modulus of rigidity

X = deflection of spring

q = Angle of twist

when the spring is being subjected to an axial load to the wire of the spring gets be
twisted like a shaft.

If g is the total angle of twist along the wire and x is the deflection of spring under
the

action of load W along the axis of the coil, so that

x=D/2.q

again I = p D n [ consider ,one half turn of a close coiled helical spring ]




Assumptions: (1) The Bending & shear effects may be neglected
(2) For the purpose of derivation of formula, the helix angle is
considered to be
so small that it may be neglected.
Any one coil of a such a spring will be assumed to lie in a plane which is
nearly r
to the
Using the torsion formula i.e axis of the spring. This requires that adjoining coils be close together. With this
T EN:
F

limitation, a section taken perpendicular to the axis the spring rod becomes
T nearly

—| -

and substiituting J = %:T .4 vertical. Hence to maintain equilibrium of a segment of the spring, only a

J ¢ shearing force
#=p1=7bx W =Fand Torque T = F. r are required at any X — section. In the analysis of

springs it is
customary to assume that the shearing stresses caused by the direct shear force
IS
. . . . " - k= E = w
uniformly distributed and is negligible X BwDn
so applying the torsion formula. G
SPRING DEFLECTION Therefore
. = Gd*
wd/2 _ G2u/D 80%n
i 7D
Er Shear stress
Thus,
BwD? n w.d/2 _ T,
TGt nd? o di2
' 32
Spring striffness: The stiffness 15 defined as the load per unit deflection therefore arr .= BwD

M3t

?Td3



WAHL'S FACTOR :

In order to take into account the effect of direct shear and change in coil curvature a
stress factor 1s defined, which 1s known as Wahl's factor

<o dc-1 0615
K = Wahl's factor and is definedas  4¢-4 ¢

Where C = spring index

-_— D."l:d
if we take into account the Wahl's factor than the formula for the shear stress becomes
16Tk
Trnl:"" - _mr

Strain Energy : The strain energy is defined as the energy which is stored within a
material when the work has been done on the maternial.

In the case of a spring the strain energy would be due to bending and the strain energy
due to bending is given by the expansion

so after substitutionwe get
2
U= 32770n
Ed*




Close — coiled helical springe subjected to axial torgue T or axial couple.

D

In this case the material of the spring 15 subjected to pure bending which tends to reduce
Radius R of the coils. In this case the bending moment 15 constant through out the spring
and 15 equal to the applied axial Torque T. The stresses 1.e. maximum bending stress may
- My
e =
_T.di2
T
B4
_ 32T

g

)

thus be determined from the bending theory.







4-Classification of Beams:

1) Simple Beam

lP
t—a ’LZ b j

Cantilever Beam

e DNNNNNNNNNNNN

L

Cantilever

2 k/ft

Po lb/m.

=
ALY

L2

L2




3) Simple Beam with Overhanging OR "Overhanging Beam"

| Overhanging beam |




Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are
developed and the terms shear force and bending moments come into pictures which are
helpful to analyze the beams further. Let us define these terms

b vl 7
Tm (a) TR:
a ‘ Ps J:h P
P :
A : A
R i 2
b A




Now let us consider the beam as shown in fig 1{a) which 1s supporting the loads P;, P5, P;
and is simply supported at two points creating the reactions R, and R; respectively. Now
let us assume that the beam is to divided into or imagined to be cut into two portions ata
section AA. Now let us assume that the resultant of loads and reactions to the left of AA
is ‘F' vertically upwards, and since the entire beam is to remain in equilibrium, thus the
resultant of forces to the right of AA must also be F, acting downwards. This forces ‘F' is
as a shear force. The shearing force at any x-section of a beam represents the tendency
for the portion of the beam to one side of the section to slide or shear laterally relative to
the other portion.

Therefore, now we are in a position to define the shear force *F' to as follows:

Atany x-section of a beam, the shear force “F' is the algebraic sum of all the lateral
components of the forces acting on either side of the x-section.

Sign Convention for Shear Force:

The usual sign conventions to be followed for the shear forces have been illustrated in
figures 2 and 3.

A

|

| F

|

|

|

I

|

I

I

I

I

I

I

|

I

I

I

F |

The resultant force which is in upward : The regultant force which iz in the downward
direction and is towards the LH.S ofthe | direction and is towards the R.H.5 of the
X-seclion is +ve Shear Force I X-seclion is +ve Shear Force.

|

A

Positive Shear Force




F

The resultant force which are in the downward
direction and iz on the L.H.5 of the X-section
is -ve Shear Force,

The resultant force which are in upward
direction and i3 on the R.H.5 of the

A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
: ¥-section is -ve Shear Force,
A

Fig 3: Negative Shear Force




BENDING MOMENT

P1 P2 Pa
|
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I !
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A | A
|
R : =5
b} A

Let us again consider the beam which is simply supported at the two prints, carrying
loads Py, P; and P; and having the reactions B, and R; at the supports Fig 4. Now, letus
imagine that the beam 1s cut into two potions at the x-section AA. In a similar manner, as
done for the case of shear force, if we say that the resultant moment about the section AA
of all the loads and reactions to the left of the x-section at AA is M in C.W direction, then
moment of forces to the nght of x-section AA must be *M' in C.C.W. Then *M' s called
as the Bending moment and is abbreviated as B.M. Now one can define the bending
moment to be simply as the algebraic sum of the moments about an x-section of all the
forces acting on either side of the section




Resultant moment on the L H.S of
the X-section is CW, then itis a
positive B.M

e e )

Fig 5: Positive Bending Moment

A

Resultant moment on the R.H.S postion
of the X-section is C.C.W, then it may be
considered as positive B.M

']

the X-section is C.C.W, thenitis a

1
[

[

[

|

[

|

[

1

Resultant moment on the L.H.S of :
|

negalive B.M 1
A

Resultant moment on the R.H.S of
the X-section is CW, then itis a
negative B.M




Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly
simplified if the relationship among load, shear force and bending moment is established.
Let us consider a simply supported beam AB carrying a uniformly distributed load w/length.
Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x'

from the origin 0.

il

LY
-

X

B

il Considered to

be detached

Let us detach this portion of the beam and draw its free body diagram.

wflength

(1 o LT




The forces acting on the free body diagram of the detached portion of this loaded beam
are the following
* The shearing force F and F+ dF at the section x and x + dx respectively.

*The bending moment at the sections x and x + dx be M and M + dM respectively.

» Force due to external loading, if ‘w' is the mean rate of loading per unit length then the
total loading on this slice of length dx is w. dx, which is approximately acting through the
centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly
through the centre ‘c'.

This small element must be in equilibrium under the action of these forces and couples.

Now let us take the moments at the point ‘c'. Such that

M+F 24 +57) 2
2 2

SF 2 F e 2o
2 2

= b+ G

:F_%+F_62_}{+5F.%{= &M [Neglecting the product of

6F and Sx being small guantities |
= F .6y = &M
_ B
"o
Undar the limits fx— 0
_dM
.
Resolvingthe forces verically we get
w.Bx +(F +8F)=F
aF

=== —
fi

Under the limits dx— 0
=>W=—£ur—i(ﬂ)
dx dx " dx
__dF __d'M

=F

F




A cantilever of length carries a concentrated load ‘W' at its free end.

Draw shear force and bending moment.

Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x) -
ve sign means the shear force to the left of the x-section are in downward direction and therefore
negative. Taking moments about the section gives (obviously to the left of the section) M = -Wx (-ve
sign means that the moment on the left hand side of the portion is in the anticlockwise direction and is
therefore taken as —ve according to the sign convention) so that the maximum bending moment occurs
at the fixed end i.e. M = -W | From equilibrium consideration, the fixing moment applied at the fixed
end is WI and the reaction is W. the shear force and bending moment are shown as,

W ¥ X

L i

% Vil —=2 0. Dﬂgrm




Simply supported beam subjected to a central load (i.e. load acting at the mid-way)

S e s s

[

v

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any
section X-X from the left end then, the beam is under the action of following forces.
h

— _

< ]

L

.So the shear force at any X-section would be = W/2 [Which 1s constant upto x <1/2]

If we consider another section Y-Y which is beyond 1/2 then

S.F.,I,._.,r. = ﬂ-W:ﬂ

2 2 for all values greater =1/2

Hence 5.F diagram can be plotted as,
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[
w, 17
B E
WK 2
. | = w lLlEEJ'l.I'Iahl{
ats i 2 2
Wl
4
E.M\r_'.lr = — 'W[I' ]
Again
W Wi
—_— =Wy e
2 3
W w
2 2
Wl WI
Bmatx-l _T T
=0

-W“i E.F.Diagram

kfor xliesbetweend and 152

0

.For B.M diagram:

If we just take the moments to the left of the cross-

section,

B

g

Which when plotted will give a straight relation 1.e.




A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

=" wilength

Here the cantilever beam is subjected to a uniformly distributed load whose
intensity is given w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we
just take the resultant of all the forces on the left of the X-section, then

S5.Fu = -Wx for all values of *x'. «=ee=eea== (1)
SFy=10
S Faae=1=-WI




So if we just plot the equation No. (1), then it will give a straight line relation. Bending
Moment at X-X 15 obtained by treating the load to the left of X-X as a concentrated load

of the same value acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X 1§

B Myy = - WH%

2

L
= = W
2

The above equation is a quadratic in x, when B.M is plotted against x this will produces a e
parabolic variation.
The extreme values of this wouldbe atx =0 and x =1 - - -
X
B.Mgy=i=- WITE
=¥ - Wy
£F |

B.M -H:ﬁ




Simply supported beam subjected to a uniformly distributed load U.D.L

! I ] S.F at any X-section X-X 15
I
Wi Wl =Wy
"'i K J "E 2 *
X |
{3
2

The bending moment at the section x is found by treating the distributed load as acting at
its centre of gravity, which at a distance of x/2 from the section

X
k4
-[—"ﬁ—lu
|
rww
“!6 Li W |
K —
x
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By = ?: - w:% i “length
sothe

=W.(l -2) ...2) m& ’;hm
- 2l | |2
B.Mg = p=0
BM,, ., =0
B Mg =-

Wie S.F.Disgram

B.M.Diagram




An | - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20
mm is used as simply supported beam for a span of 7 m. The girder carries a distributed
load of 5 KN /m and a concentrated load of 20 KN at mid-span.

Determine the

(). The second moment of area of the cross-section of the girder

(i1). The maximum stress set up.

Solution:

The second moment of area of the cross-section can be determained as follows :

For sections with symmetry about the neutral axis, use can be made of standard | value for
a rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided
into convenient rectangles for each of which the neutral axis passes through the centroid.
Example in the case enclosing the girder by a rectangle

l | - |5haded partion

_ FIIIIII x3|:||]3] 017 - 5 lgn xéﬁlﬂl —:

girder = rectangle

12
= (4.5-2.64 y10°%
=186 =10 % m*
The maximum stressmayhbe foundfrom 00mm| b 777
' ' ' M - //I
thesimple bendingthearybyegquation % ;/A .
E:H:E (7/ y/ 280 A
y IR A A ¥
lLE. ¥

1 = 200 mm -




Calculations of Beam Reactions

Ex3:

—>> Fx=0
Rax=10

~ (1)

szy@m=0-"@)

250 +80x25+80x%x3.75-Re*x5=0

-~ RBy=+135N T

250N 50N 8ON

| R

1.25m 1.25m 1.25m 1.25m

Ray Rey




2, Compare the strain energies due to three types of internal forces in the
rectangular bent shown in Fig. having uniform cross section shown in the same Fig.

Take E=2 x 105 MPa, G= 0.8 x 105 MPa, Ar=2736 mm’

12kN

B lc /'I

) 12 mm 240 mm

/_]7%7 120 mm

Solution:

Step 1: Properties

120%240° 108*216°
A=120%240 - 108 * 216 =5472 mm2, I= T =47.54x 10° mm*

E=2*105MPa;G=08* 105 MPa: Ar=2736 mm’
Step 2: Strain Energy due to Axial Forces

Member AB is subjected to an axial compm.=-12 kN

Strain Energy due to axial load for the whole str. is

n= 2P L _(- 12*103)2*5000=32&94N_m

(Ui)e =

u?.AE T 2%5472% 2% (F




Step 3: Strain Energy due to Shear Forces
Shear force in AB = 0; Shear force in BC =12 kN

Strain Energy due to Shear for the whole str. Is

n=2 V2L 12%10°) *4000
Uy=27== (* j 5
=2A G 2*2736*0.8x10

Step 4: Strain Fnercoy due to Bending Moment
Bending Moment in AB=-12 % 4 =45 kN-m

=[315.78 N -mm

Bending Moment in BC=-12x

Strain Energy due to BM for the whole structure is

s=2Midx  (-48*10%)° *5000 L (-12*10° *x) *dx

(Uu=2

— =767.34*10° N-mm
=O2EL 2%2x10° *47.54*10°  2*2*10° *47.54*10°

Step 5: Comparison

Total Strain Energy = (Ui)p + (Ui)V+ (Ui)M

Total Strain Energy =328.94 +1315.78 +767.34 x 103
= 768.98 x 103 N-mm

Strain Energy due to axial force, shear force and bending moment are 0.043%, 0.17% &

99.78 % of the total strain energy.




Consider an [ - section of the dimension shown below.

- '| Flﬂnge
B

e
| Q2 > et

“f’
o] N d A

The shear stress distribution for any arbitrary shape is given as Zl

Let us evaluate the quantity Ay , the AY quantity for this case comprise the contribution
due to flange area and web area




B Areaoftheweb
= d—
7 A h[f "]
/ Distance of the centroid fromM_A
_1
Zae 5}
[
1
d-2 =_ —_
4 2[ +]r]
N L A Therefore,
— d 1{d
A!u"|w|h=h[§'!l']§[f+i’]
Flange area
Hence,
_ D +d) d d 1
Area of the flange =B g] A?Inm-ﬂ ][ +b [E'Y][E‘*F]E
DistancauiiheWntroidufthefhngefrnmthaN.A Thus, r
_ DY -d*) b [d?
[D d] AF|Tm|=B[ g ]"‘5 LT-TE]
_ D+d Therefare shear stress,
7 B{D2 d] 2
F h l:l
Hence, F= hl\ ﬂ]]
_ __{D-d}{D-d
S B B
=
@z =
¥
Web Area - — A




L
=y
-

4 ¥
D N R '}

— D j——

rom =ae [B0F - ) o]




Tom™

This distribution is known as the “top — hat” distribution. Clearly the web bears the most
of the shear stress and bending theory we can say that the flange will bear most of the
bending stress.







Deflection of Beams
The deformation of a beam is usually expressed in terms of its deflection from its original

unloaded position. The deflection is measured from the original neutral surface of the beam
to the neutral surface of the deformed beam. The configuration assumed by the deformed

neutral surface is known as the elastic curve of the beam.

X —) ‘ '\\ _

" (Deformed shape)

Figure: Elastic curve




METHODS OF DETERMINING DEFLECTION OF BEAMS

O




Example - Cantilever beam

Consider a cantilever beam (uniform section) with a single concentrated load
at the end. Atthe fixedendx=0,dy=0, dydx=0

) niia X
/Z// -_:——————‘:::-_-_:j' A
—- -

From the equilibrium balance .. At the support there is a resisting moment -
FL and a vertical upward force F.

At any point x along the beam there is a moment F(x - L) = M, = El d *y /dx
2

2
El ':E‘fz =-F (L-x) Integrating

2
dy _ X - - -
E'EE =-F {Lx-i ) *C, .....(C,;=0 because dy/dx = 0 atx = 0)

Integrating again




Example - Simply supported beam

Consider a simply supported uniform section beam with a single load F at the
centre. The beam will be deflect symmetrically about the centre line with O slope
(dy/dx) at the centre line. It is convenient to select the origin at the centre line.

Fox
’ ° i 8
L Li2 _L Liz
Fi2 Fi2
d_}fﬂ =z Jg(l-ﬂ) - Ex ]-EEI 2 x) Integrating

dy _F_ Lx_zz) - - -
d _EEI(E " +G1,.. I:E:1 0 because dy/dx = 0 at x = 0)

3
Integrating again y =2—EI{ LI"E— X)+c,

3 3
= 0 when x = L/2 therefore ;£ (L. L -
y = 0 when x erenreEEl(H 12)1-.; 0

3
and thus c,= -‘%
2
2 3 3 3

Atend B (“—'-"’— (l--f)= FL o and y.= _F(_L-_L), FL o

b 2ei\s 8% 16EI B 2EIN8 12 48EI
At centre C V= - F_la { slnpe%n‘"‘% =0 by symmetry)
x=0 48E|




Moment Area Method
This is a method of determining the change in slope or the deflection between two
points on a beam. It is expressed as two theorems...

Theorem 1

If A and B are two points on a beam the change in angle (radians) between the
tangent at A and the tangent at B is equal to the area of the bending moment
diagram between the points divided by the relevant value of El (the flexural
rigidity constant).

Theorem 2

If A and B are two points on a beam the displacement of B relative to the tangent
of the beam at A is equal to the moment of the area of the bending moment
diagram between A and B about the ordinate through B divided by the relevant
value of El (the flexural rigidity constant).



Examples .. Two simple examples are provide below to illustrate these theorems
Example 1) Determine the deflection and slope of a cantilever as shown..

F

ra—
e

The bending moment at A = My =FL

The area of the bending moment diagram Ay =F.L" /2

The distance to the centroid of the BM diagram from B=x.=2L/3
The deflection of B= v, = A y.x . /EI=F.L" /3El

The slope at B relative to the tan at A=0,=Ay /El= FL” /2EI




Example 2) Determine the central deflection and end slopes of the simply
supported beam as shown..

E=210GPa....1=834 cm"...... EI = 1,7514. 10 *Nm *

Bending Moment Diagram

A =10.1,8.1,82=16,2kNm
A;=10.1,8.2=36kNm
A;=10.1,8.2 =36kNm

A =10.1,8.1,82=16,2kNm

x; =Centroid of A, =(2/3).1,8=1,2
x; =Centroid of A; =18+ 1=2,8
x3 =Centroid of Az=18+1=2,8
Xy = Centroid of Ay =(2/3).1,8=1,2




The slope at A is given by the area of the moment diagram between A and C
divided by EI.

Ba=(A, + A;) El = (16,2+36).10° /(1,7514. 10 %
= 0,02%rads = 1,7 degrees

The deflection at the centre (C) is equal to the deviation of the point A above
a line that is tangent to C.
Moments must therefore be taken about the deviation line at A.

Be=(Anmxm) /EI = (A;x,+A:x:)/El = 120,24.10%/(1,7514. 10 %)
= (,0686m = 68,6mm

Moment Area Method
This method is based on two theorems which are stated through an example. Consider a
beam AB subjected to some arbitrary load as shown in Figure 1.

Let the flexural rigidity of the beam be El. Due to the load, there would be bending
moment and BMD would be as shown in Figure 2. The deflected shape of the beam which
Is the elastic curve is shown in Figure 3. Let C and D be two points arbitrarily chosen on
the beam. On the elastic curve, tangents are drawn at deflected positions of C and D. The
angles made by these tangents with respect to the horizontal are marked as and . These
angles are nothing but slopes. The change is the angle between these two tangents is
demoted as . This change in the angel is equal to the area of the diagram between the two
points C and D. This is the area of the shaded portion in figure 2.



M
Hence 8., =06, ~ 0 =Areaﬂfﬁ diagram between C and D

Bep =Area BM —»1 (a)
El

It is also expressed in the integration mode as

M
or [ M —e 0

Equation 1 is the first moment area theorem which is stated as follows:

Statement of theorem I:
The change in slope between any two points on the elastic curve for a member
subjected to bending is equal to the area of % diagram between those two points.




Fig. 2




Problem 1 : Compute deflections and slopes at C,D and E. Also compute slopes at A
and B.

Elasitic cuuvve




To Compute Reactions:
—+

> fx=0=H, =0
AT Ry =0= Vit V, —W-W=0

V, +V, =2W
2 ZMB=D=>LVA—%—W@=

Section (3) = (3) RHP (0 to %)
S+ Mo=Wx
Atx=0;BM@B=0

Atx=y;,BM@D=%

AIS-{}, ﬁc = ﬁD, H,q= Haﬂﬂd Hc= HD

Bending Moment Calculations:
Section (1) — (1) (LHP, 0 to L/3)
+ WMo =Wx
Atx=0:BMatA=0
x=:BM@C= "y

Section (2) - (2) (LHP, ¥ t02%)
+D M= Wx = W(x - L)
Atx=1Y,BM@C= Wy — Wi+ Wy

2L W(H_,) 2L L}
Atx="—BM@D=W| — |-W| —=-=
3 3 3 3
=(2M_2WL+WL)
3 3 3
WL
3

This beam is symmetrical. Hence the BMD & elastic curve is also symmetrical.
In such a case, maximum deflection occurs at mid span, marked as g Thus, the tangent
drawn at E will be parallel to the beam line and 8¢ is zero.




To compute B¢

From first theorem,
Bre= Area of BMD between E&C

El
o= WA)
El
_wr
18ElL
Bg being zero, Bc= WL (&)
18EI

To compute 8
From First theorem,

Har = Area of BMD between A&E

El
[L WL WL(L
A= l—+—|=
6 oo 83)3 3 06
A UE EI
WL wL?
_+_
_ 18 18
El
B being zero, 0, = WL (D)
eI e A T I
2
Ba (&)

~ 9Kl




To compute dg

From 2™ thearem

B [Area of BM f) Ea
B El

A

(lkﬂ}[ik}{ﬂk
.23 3 )33)°(3 6

El

wL’ JrSWL3
- _81 216
El

_ 1 SWL + 15WL
El 648

_23 WL
648El

From figure, Kg. 15 equal to 8e.

Therefore 8 =

648El

_20WL

23WL° [:L)

To compute B¢

From 2™ thearem

(Area of EMD?)(E

c=

El

(W)
El

=WL’£ 1 }
EI | 216

WL’

216El

8. =0 - Kec

5 _ 23w wr
Y% G48ElI  216El

_ 23WL' -3WL

64 8EI




Problem 2. For the cantilever beam shows in figure, compute deflection and slope at
the free end.

Jo KN/M

Beam

80 knm




Consider a section x-x at a distance x from the free end. The FBD of EHP 1s taken into
account.

(RHP G +) BM @ X-X = Myx =-10 (x) (x/2) = -5x°

Atx=0; BEM@B=0

Atx=4m: BM@ A=-5(16)= -80 kNm
The BMD is sketched as shown in figure. Note that it is Hogging Bending

Moment. The elastic curve is sketched as shown in figure.
To compute By

For the cantilever beam, at the fixed support, there will be no rotation and hence
in this case 8, = 0. This implies that the tangent drawn to the elastic curve at A will be
the same as the beam line.

From [ theorem,

A
-5 =320
BTy
8 being zero,
32[!'
" 3EI

To compute dg

From Il theorem

K,qﬂ=

I
T
%
3

From the elastic curve,

K g = 65 = %(J,)




Problem 3: Find deflection and slope at the free end for the beam shown in figure by
using moment area theorems. Take EI = 40000 KNm™

6 kN/m
B % M’@ Beam

g A et
- | '
=R e

& CE N -

M = -3z2'
144 knm yi

= = 24X+ 48

Blastic cuyve




Calculations of Bending Moment: To compute dg
Maxdx
Region AC: Taking RHPGy + Ko =[5
Moment at section = -6x/2

1} 18
2 = — | =3x7xdx +— | (= 24x + 48 Jxdx
Atx=0,BM@A=0 EI;[ EI!
x=4m; BM @ C =-3(16) = - 48kNm . 1

- 4 x! & KJ &
Region CB: (x=4tox = §) = EI[/;];JFE[ 24(4)4+43(f§)4]
Taking RHP G+, moment @ section = -24 (x-2) =-_3255]+L -24{512_54}+24{54_15}

= -24x+48; 4El EI| 3
Atx=4m; BM @ C=-24(4)+ 48 = 48kNm; -2 1 — 3584 +1152]
x=8m BM@B=-144 kNm; El  E
- 2624

= —0.0656m = 0.0656m +

To compute By: =

First moment area theorem is used. For the elastic curve shown in figure. We
know that 8, = 0.
Mdx
El

BA.EI.= BA"” HE=

14 e
=Ei—3fdx+ﬁ£(—z4x+4s)dx

_3 1 I
B, =— 4| +—|—24<4 +48x|
A EI[/{E EI[ /:?f XL
_=64 10 _ _
= T E 12(64 16 )+ 48(8 — 4)]

=-0.0112 Radians

I =0.0112 Radians (7)) _




Problem 4: For the cantilever shown in figure, compute deflection and at the points

where they are loaded.
24 = A
: 15N lokn
¥ 2:5m P PR 5m +




To compute O :

Bs=Bp~0,= é[- £(2.5)(37.5) = 4(1.5)(15)]

O = _[— ((1.5)(37.5+15) - %(1.5)(15)]

50.625
S TE (D)

o A(2.5)(37.5)%)2.5) 1
Bp=— = -5 (%)(1.5)45(1)

100.625
El

100.625
L5

B = %[}4{1.5](3?.5 +15)0.857 + J4(1.5)45)1)

_44.99
T TE Y




CONJUGATE BEAM METHOD

This is another elegant method for computing deflections and slopes in beams.
The principle of the method lies in calculating BM and SF in an imaginary beam called as
Conjugate Beam which 1s loaded with M/El diagram obtained for real beam. Conjugate
Beam 18 nothing but an mmaginary beam which 18 of the same span as the real beam
carrying M/El diagram of real beam as the load. The SF and BM at any section in the
conjugate beam will represent the rotation and deflection at that section in the real beam.

Following are the concepts to be used while preparing the Conjugate beam.

e [tis of the same span as the real beam.
® The support conditions of Conjugate beam are decided as follows:
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Problem 1 : For the Cantilever beam shown in figure, compute deflection and rotation at

(i) the free end o g

(if) under the load J,
4
ae c A Seam
o - —+
B am
t l + I 4 Scole
B e 1, e
5 - =
BMD
—

150 knm




Conjugate Beam:

By taking a section (@ C" and considering FBD of LHP,

-150 -225
TSF f, = 3 4)=—"
Z B BX%) El

150 450
BM@C= —=())2)=
Similarly bytakmg a section at A° and considering FBD of LHP:

- 225
SF@A's ——
¢ El

- 225 =900
BM@A = ——[242 —_—
@ = (2+2)= =

SF (@ a section in Conjugate Beam gives rotation at the same section in Real Beam

BM (@ a section in Conjugate Beam gives deflection at the same section in Real Beam

Therefore, Rotation @ C = E (D

El

Deflection @ C= %[J,]

Rotation @ A = 225 (D)

El

Deflection @ A = @[i]

R N—




Problem 2: For the beam shown in figure, compute deflections under the loaded
points. Also compute the maximum deflection. Compute, also the slopes at supports.

3of~ TKN
A e £ D Te Beam
o & +— B D -+
3m 4m 3m

Conjugate
Beam

Sechon




For the conjugate beam:

V, =V, = %[ Total load on Conjugate Beam ] _ K[ISD 120} 150

El El El
- K204 X% )3)+ 4 (39%)]

To compute ¢ :
A section at C° 1s placed on conjugate beam. Then considering FBD of LHP:

¢ wvac- 2016 S

El

_ 450 90 _360

To compute dg:

A section (@ E’ 1s placed on conjugate beam. Then considering FBD of
LHP:

Dsvee- 20-46( 2 p-2ew

El

_ 750 270 60 420 (i)'
E = - =
El El EI EI

150
Ba=——1(7)) Bg=

| LI —
Rl T 5 (¢




Problem 3: Compute deflection and slope at the loaded point for the beam shown in
figure. Given E =210 Gpa and I = 120 x 10°mm’. Also calculate slopes at A and B.

goKN




To Compute reactions in Conjugate Beam:
+DBM@C = %(3)—%[6—]5?}(3}(1)

. . 1% 60 1120
Yliy=0=V, +V, (2)(3)(3} 2( = }(3)_0 30 %0 20
v +V'_9__ﬂ= : T El El  E
SRR ) B & B
Given E =210 x 10° N/nt*
v oLy 220 =210x 10° WN/m?
A E R I = 120x 10° mm*
120 x 10° (107 m)*
=120x 10° (1079

. 1Y 60 1(120 \
Y m, =047 V,(6)- (_}[_}(3)(4)— -(—}(3}(2 =120x 10° m*;
2\ H 2\ H EI =210x 10° (120 x 10®)= 25200 kNm™

360 360 720 . 30 PR
6V, = + — Rotation @ C = =1.19 x 107 Radians ()
El El EI 25200
v 2120 150
El : El Deflection @ C = =0.0107 m
25200
=10.71 mm (+ )

SF and BM at C’ is obtained by placing a section at C” in the conjugate beam. 4= 4.76 X 10” Radians

120 1(60
SFaC= —__|___
@ EI 2(51)(3}

_30
El

B = 5.95 X 107 Radians:




Problem 4: C or;lpute slopes at supports and deflections under loaded points for the
beam shown in figure.

BOKN loo kN




To compute reactions and BM in real beam:

T D fy=0=V, +V, =150
+2 ZME =0 9V, —50(6)-100(3)=0

600
V, = e 66.67kN v =83.33kN

BM at (1) —(1)=66.67 x
Atx=0:BMatA=0, Atx=3m BMatC=200kNm

BM at (2) —(2) = 66.67 x — 50 (x-3) = 16.67 x + 150

Atx=3m:BMatC=200kNm, Atx=6m, BMatD=250kNm

BM at (3) —(3) is computed by taking FBD of RHP. Then
BM at (3)-(3)=83.33 x (x 18 measured from B)

Atx=0,BMat B=0, Atx=3m, BMatD =250 kNm

To compute reactions in conjugate beam:

S 14200 100
T Y fy=0=V, +V, =3(3){E}+:{E)

50(&) 3005

762.5

El

+2 D2 M, =0

- (2

oV = 3850
El
V= 427.77
El
V. = 334.73
El
334.73
s, =21y =T ()
El

To Compute d¢ :

A Section at C is chosen in the conjugate beam:

2 puac= 27 (3)_(1)(3{@)(1)

2 El

c=




To compute dp:

Section at D is chosen and FBD of RHP is considered.

El

S-myup- 2E0)- 15[ B2

_879.19
El




Problem 5: Compute to the slope and deflection at the free end for the beam shown in

figure.
1O PNy
5 A Beam
ra 4m ¥
L § le
Y P S X
— X




The Bending moment for the real beam is as shown in the figure. The conjugate beam

also 1s as shown.

Section at A’ in the conjugate beam gives

—5x°
ElL

SF @ A’ dx

I
o

(,;)., =2 (64)

3EI

=320

3EI

320

By —
3E] (D)




Macaulay's Methods

If the loading conditions change along the span of beam, there is
corresponding change in moment equation. This requires that a separate moment
equation be written between each change of load point and that two integration
be made for each such moment equation. Evaluation of the constants introduced
by each integration can become very involved. Fortunately, these complications
can be avoided by writing single moment equation in such a way that it becomes
continuous for entire length of the beam in spite of the discontinuity of loading.

Note : In Macaulay's method some author's take the help of unit function approximation
(i.e. Laplace transform) in order to illustrate this method, however both are essentially the
same.



Procedure to solve the problems

(i). After writing down the moment equation which is valid for all values of ‘x' i.e.
containing pointed brackets, integrate the moment equation like an ordinary
equation.

(i1). While applying the B.C's keep in mind the necessary changes to be made
regarding the pointed brackets.

[lustrative Examples :

1. A concentrated load of 300 N is applied to the simply supported beam as shown in
Fig.Determine the equations of the elastic curve between each change of load point and
the maximum deflection in the beam.

¥

Ri=100N Rz=200N



Solution : writing the general moment equation for the last portion BC of the loaded
beam,

EI%=M=|{1[I]:—3]I]{:—2}}Mm 1)

X

Integrating twice the above equation to obtain slope and the deflection

1Y = (5047 150 x - 2)" + C,JNm?
Ely =[%x3 -50{x - 2Y’ +C,x+C2]Nm3 (3)

To evaluate the two constants of integration. Let us apply the following

boundary conditions:

1. At point A where x = 0, the value of deflection y = 0. Substituting these values
in Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.
substituting these values in the deflection Eqg. (3), we obtain

0= [53_%3 -50(3-2)° *3.C|]ur Cy==-133N.m?




Having determined the constants of integration, let us make use of Eqs. (2) and
(3) to rewrite the slope and deflection equations in the conventional form for the two

portions.
segment AB (0 £ x £ Z2m)
E|d—3" =(50x* -133)Nm’ LS
Ely = [:'” J 133:]N m (5)
segment BC (2m <€ x £3m)

E|'j3" (50 -180(x-2)" -133x]Nm? .....(B)

Ely = [@}{3 - —133}{]N.m3 e (7))

Continuing the solution, we assume that the maximum deflection will occur in the segment AB. Its
location may be found by differentiating Eq. (5) with respect to x and setting the derivative to be equal
to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero and solving for

the point of zero slope.

50 x2— 133 =0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does not yield a
value < 2 m then we have to try the other equations which are valid for segment BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs in
this region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in Eq (5),

which yields

EIY |paem = ~145Nm*  (8)



The negative value obtained indicates that the deflection y is downward from the
X axis.quite usually only the magnitude of the deflection, without regard to sign, is
desired; this is denoted by d, the use of y may be reserved to indicate a directed

value of deflection.

ifE=30Gpaand[=19x 10°mm®*=1.9x 10 *m®*, Eq. (h) becomes

m = (30x10°) (1 8x10°°)

F |I'I'III

Then = -254mm




Elastic Stability Of Columns
Introduction:

Structural members which carry compressive loads may be divided into two broad
categories depending on their relative lengths and cross-sectional dimensions.

Columns:

Short, thick members are generally termed columns and these usually fail by crushing
when the yield stress of the material in compression is exceeded.

Struts:

Long, slender columns are generally termed as struts, they fail by buckling some time
before the yvield stress in compression is reached. The buckling occurs owing to one the
following reasons.

(a). the strut may not be perfectly straight initially.

(b). the load may not be applied exactly along the axis of the Strut.

(c). one part of the material may yield in compression more readily than others owing to
some lack of uniformity in the material properties through out the strut.




In all the problems considered so far we have assumed that the deformation to be both
progressive with increasing load and simple in form i.e. we assumed that a member in
simple tension or compression becomes progressively longer or shorter but remains
straight. Under some circumstances however, our assumptions of progressive and simple
deformation may no longer hold good and the member become unstable. The term strut
and column are widely used, often interchangeably in the context of buckling of slender
members. |

At values of load below the buckling load a strut will be in stable equilibrium where the
displacement caused by any lateral disturbance will be totally recovered when the
disturbance is removed. At the buckling load the strut is said to be in a state of neutral
equilibrium, and theoretically it should than be possible to gently deflect the strut into a
simple sine wave provided that the amplitude of wave is kept small.

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with
loads exceeding the buckling load, any slight lateral disturbance then causing failure by
buckling, this condition is never achieved in practice under static load conditions.
Buckling occurs immediately at the point where the buckling load 1s reached, owing to
the reasons stated earlier.



The resistance of any member to bending is determined by its flexural rigidity EI and is
The quantity | may be written as I = A%,

Where [ = area of moment of inertia
A = area of the cross-section
k = radius of gyration.

The load per unit area which the member can withstand is therefore related to k. There
will be two principal moments of inertia, if the least of these is taken then the ratio

I i g length of member
k 7 least radius of gyration

Is called the slenderness ratio. It's numerical value indicates whether the member falls
into the class of columns or struts,

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In
the following sections, different cases of the struts have been analyzed.




Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load “P' this
load *P"' produces a deflection *y' at a distance *x' from one end.

Assume that the ends are either pin jointed or rounded so that there is no moment at
either end.

Assumption:
The strut is assumed to be initially straight, the end load being applied axially through

centroid.

%*w:?

According lo sign




B. M), = -Py
Futherwe know that
i
E| d_z =
dx

In this equation *M' is not a function *x'. Therefore this equation can not be integrated
directly as has been done in the case of deflection of beams by integration method.

Thus,
d?y
+* r =
Bl +Py= 0

Though this equation is in “y' but we can't say at this stage where the deflection would
be maximum or minimum.

S0 the above differential equation can be arranged in the following form

d’y . Py
= =0
id | El

Let us define a operator




D = d/dx

(D*+n”) y =0 where n* = P/EI

This is a second order differential equation which has a solution of the form consisting
of complimentary function and particular integral but for the time being we are
interested in the complementary solution only[in this P.I = 0; since the R.H.S of Diff.
equation = 0]

Thus v = A cos (nx) + B sin (nx)

Where A and B are some constants.

P . |P
y=AcnsJ:x * Ean,J:x
Therefore El El

In order to evaluate the constants A and B let us apply the boundary conditions,
(iJatx=0:y=0

(ijjatx=L;y=0
Applying the first boundary condition yields A = 0.
Applying the second boundary condition gives

Bisin [LJE ] =

El
_ _ F
ThusetherB =0,0r SIH[L,J;] =

if B=0 that y0 for all values of x hence the strut has not buckled yet. Therefore the solution reguir

(e

P .7, p- :'FEI

El L

From the above relationship the least value of P which will cause the strut to buckle, and
itis called the * Euler Crippling Load ” P, from which w obtain.




Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load
being applied axially through centroid] reached. There is always some eccentricity and initial
curvature present. These factors needs to be accommodated in the required formula's.

It is realized that, due to the above mentioned imperfections the strut will suffer a deflection
which increases with load and consequently a bending moment is introduced which causes failure
before the Euler's load is reached. Infact failure is by stress rather than by buckling and the deviation
from the Euler value is more marked as the slenderness-ratio I/k is reduced. For values of I/k < 120
approx, the error in applying the Euler theory is too great to allow of its use. The stress to cause
buckling from the Euler formula for the pin ended strut is

|
Euler'sstress, o, = PIE = % P

Euler's curve

2 T e
E“'It' = Ak Far struciural stesl,
?TEE SIPens oURES coinaice at 'k = 80
= curves colncide
Vg = —% o —

1y Iypr—""""" alt ik = 120

— or c

k o

axparmenial
CLEVEE

A plot of s; versus |/ k ratio 15 shown by the curve ABC.

Rl 100 150k
short  intermediste ——3 long column







Consider the complex stress system in Figure 4.1 acting on an element of material. The
stresses o, and o, may be compressive or tensile and may be the result of direct forces or
bending. The shear stresses may be as shown or completely reversed and occur as a result of
either shear forces or torsion. Since the applied and complementary shear stresses are of
equal value on the x and y planes, they are both given the symbol, 7,

——

Oy
)
. rly
A
\ B[}
T\
- 4
A \\ 8 %
V-
Y

Rg41: Two-dimensional complex stress system.



The diagram thus represents a compiete stress system for any condition of applied load
in two dimensions. Consider the rectangular element of unit depth shown in Figure 4.1 .
subjected toa system of two direct stresses and shear stresses.

For equilibrium of the portion EBC (Figure 4.1), redrawn in Figure 4.2:

EB BC
‘d,(i )j rxy(B )

* o4 (BC);, 7X¥(EB)

Figure 4.2: Forces Acting on Element EBC



| H ~ 1 | + |
Resolving perpendicularto EC:

‘\U){EIBE fw(Béc)

g, X1XEC =0 4 x BC x 1 x cos?

-
-

+ o0 y X EB X 1 X sin? | > 0,(80); rniE)

+ T, x1x EB x cos? "

+ Txyxlestine

o 6
Note that EB = EC sin and BC = EC cos

o r

g, x EC =0 , x EC cos’ +o , x EC sin

T 0 0
+ 4 X EC x sin cos

T 0 0
+ xy X EC sin COS




2 L2 .
= o yx C0s6O +o5 ysin@ + 271, sind cod

ecall that : cos’ 0 (1 +cos20 )2, sin® = (1-cos2 )2 and
sin 29 =2sin? cos?

=6 J2 (1 + cos2?) +o J2 (1 - cos2? ) + Ty sin 2

c,=— + ———=0C0820+ T, SiN20 ... ........ (4.1)

4 Xy

esolving parallel to EC:

0 0
y X1 XxXEC =0 , x BC x 1 x sin +tc X EB x 1 x cos
T 0 T 0
+ 4 X 1 x EB x sin + xy X 1 x BC x cos
A 3 “a@r'(?)
r' ';

> 0, (8C); 7xy(EB)

Ty




Derivation of General Equation
Concluded

t, X EC =6 4y X EC sinf cosd o  x EC sind cosd +

T, X EC x sin®@ . 7, x EC cos’f
r, =0, sin? cos? -5 , sinl cost + 7 sinf -7 Xy cos’?
Recall that sin 27 = 2sin cos? and cos2? = cos’? - sin®?
O'X—O'y .
T, = : sin26 - Ty C0s260 .. .. ..............(4.2)




SPECIAL CASES OF PLANE
STRESS

The general case of plane stress reduces to simpler states of
stress under special conditions:

4.1.1 Uniaxial Stress: This is the situation where all the stresses acting on the X

stress. The corresponding transformation equations, obtained by setting , an
4 vy equalto zero in the Equations 4.1 and 4.2 above:
O-X O-X H
o, = (1+co0s28), T, = sin 26
2 2

y

element are zero except for the normal strees ,, then the elementis in uniaxial

d



Special Cases of Plane Stress Contd.

i * YK
r
Oy a 1 0
«— O i — Ty | x
ilfr—
Tyx
' Element in uniaxial stress T ElL

422 Pure Shear: The transformation equations are obtained by substituting ox =0 and oy
= 0 into Equations 4.1 and 4.

Cg = Ty Sin28 T4 = T,, c0820

4.2.3 Biaxial Stress: The xy element is subjected to normal stresses in both x and y
directions but without any shear stresses. 7. IS merely dropped from the general

equaﬁons.toobtain:
o _+o o,.—0C - o,—0, .
oy = ——2 +—=—2 c0820 7o = ———>sin26
2 2 2

The maximum direct stress will equal o x Of oy Whichever is the greater, when & =0 or 90°.

el .M M . AED i




The maximum shear stress in the plane of the applied stresses occurs when § = 45°, ie.

1 | | y
l™ ~(0:70,) o (43)

e
A i

Oy

 Element in biaxial stress



Example: An element in plane stress is subjected to stresses o, = 16,000 N/mm?, &, =6000
Nimm?, and 7, = 4000 N/mm?. Determine the stresses acting on an element
inclined at an angle of 8 = 45°.

- - __.a.____________—- .

/Iy ’ $
rﬁﬁ‘mpﬁ { ;= 1;.00/\
A \ Pt 6= 45°

. , Txy=4,t!l)::n | oy, = 7,000 psi / \(w.="5-ml”i\

ol VA sl

T,
7 - T o )\ /b
(b) 7




Solution: To obtain the stresses on an inciined element, use equations (4.1) and (4.2)

g.+0, 0.0
0,= ‘2 L4 ’2 ’cg§29+ 7, 8in2

_ 1600046000 16,000- 6000
2

0, cos0° +4000 sin 90=15,000N  mar

0,-0 -
'r,:-ii-!-sinw - 7,00800 = 160002 6000sin90+4000 c0s90° = S000N/ mar




Principal Stresses and Maximum
Shear Stresses

4.3 PRINCIPAL STRESSES AND MAXIMUM SHEAR STRESSES

The maximum and minimum stresses which occur on any plane in the material can now be
determined as follows:

O, +O0, O,—O

C,= 5 + ’2 = cos20+ T, s5in20 - - . @‘!)
For o, to be a maximum or minimum, do,/d@ = O
do .
—‘—i—1=-(a,—o',) sin260 + 27, cos28=0 = Cog 28
-4
2
tan 26 = ot T " - § |

(ax —Uy )

From Figure bealow:

27
sin28 = 2 Bt
2 2 : g =
J [(cr, —o, ) +4rt ,w] \c.“’\ 2.,
26
cos28 = (0. —2,) (o)

- J [(a‘_, -o, )? +4rz,,.]




Principal Stresses and Maximum
Shear Stresses Contd.

The solution of equation 4.4 yields two values of 20 separated by 180°, i.e. two values
of & separated by 90°. Thus the two principal stresses occur on mutually perpendicular
planes termed principal planes,

Substituting in equation 4.1:

o,+to0, c,-0, (o, —O'y) 2rxy
To = o) " 2 > > tw > >
‘(ax —O'y) + 47 4 (o, —O'y) +47 5
2 2 2
o,+0, (o, —O'y) T xy
c,=—">— % +
2 2 2 2 2
2J(O-x _Uy) +4T Xy J(O-x _O-y) +4T xy
2 2
c,=—"" & _
2 2 2 2
\/‘(O'x —o,) +4r




Shear Stresses at Principal Planes
are Zero

o,to, 1 , ;
o, Or o , = t - ‘O'X—O'y) +4r7 Xy (45)
2 2
These are termed the principal stresses of the system. By substitution for?

from equation 4.4 , into the shear stress expression (equation 4.2):

r,=——>5siN20 - 7, C0S20 . . .. .. .. .. .. (4.2)




Principal Planes and Stresses Contd.

Thus at principal planes, 7z, = 0. Shear stresses do notoccur atthe principal planes.

The complex stress system of Figure 4.1 can now be reduced to the equivalent system

of principal stresses shown in Figure 4.2 below.

% Principal planess

Figure 4.3: Principal planes and stresses




Equation For Maximum Shear Stress

From equation 4.3, the maximum shear stress presentin the system is given by:

1 1 ) )
T = —(ax—ay) = - ax—ay) +4 7y
2 2

and this occurs on planes at 45° to the principal planes.

Note: This result could have been obtained using a similar procedure to that used for

determining the principal stresses, i.e. by differentiating expression 4.2, equating to

zero and substituting the resulting expression for




4.4 PRINCIPAL PLANE INCLINATION IN
TERMS OF THE ASSOCIATED PRINCIPAL

STRESS

It has been stated in the previous section that expression (4.4), namely

27T

Xy

(o, -0,)

tan 20 =

yields two values of o , i.e. the inclination of the two principal planes on which the

principal stresseso ; oo 5. It is uncertain, however, which stress acts on which
: T 0 :

plane unless eqn. (4.1 ) is used, substituting one value of obtained from eqn. (4.4)

and observing which one of the two principal stresses is obtained. The following

alternative solution is therefore to be preferred.




PRINCIPAL PLANE INCLINATION
CONTD.

e Consider once again the equilibrium of a triangular
block of material of unit depth (Fig. 4.3); this time EC
IS a principal plane on which a principal stress
acts, and the shear stress is zero (from the property
of principal planes).




PRINCIPAL PLANE INCLINATION
CONTD.

Resolving forces horizontally,
O,x BCx1) + ( 74y X EBx1)=( 0,XECx]I) cos ¢

OEC cos @ + 7, x ECsin /= o,x ECcos ¢

O  +

tan 6 =

Ty tan 0 = o,

P X .. (4.7)




Thus we have an equation for the inclination of the
principal planes in terms of the principal stress. If,
therefore, the principal stresses are determined and
substituted in the above equation, each will give the
corresponding angle of the plane on which it acts
and there can then be no confusion.



PRINCIPAL PLANE INCLINATION
CONTD.

» The above formula has been derived with two tensile
direct stresses and a shear stress system, as shown
In the figure; should any of these be reversed In
action, then the appropriate minus sign must be
Inserted in the equation.




Graphical Solution Using the Mohr’s
Stress Circle

4.5. GRAPHICAL SOLUTION-MOHR'S STRESS CIRCLE

Consider the complex stress system of Figure below. As stated
previously this represents acomplete stress system for any
condition of applied load in two dimensions. In order to find
graphically the direct stress 2 ;, and shear stress Oz on any
plane inclined at? to the plane on which 9 , acts, proceed as
follows:

(1) Labelthe block ABCD.
(2) Setup axes for direct stress (as abscissa) and shear stress (as ordinate)
(3) Plot the stresses acting on two adjacent faces, e.g. AB and BC, using the following

sign conventions:




Direct stresses:. tensile, positive; compressive
negative;

Shear stresses: tending to turn block clockwise,
positive; tending to turn block

counterclockwise, negative.

This gives two points on the graph which may then
be labeled AB and BC respectively to denote
stresses on these planes



Mohr’s Circle Contd.

A

Fig. 4.5 Mohr's stress circle.

A

(4) Join AB and BC.
(5) The point P where this line cuts the a axis is then the centre of Mohr's circle, and
the
line is the diameter; therefore the circle can now be drawn. Every point on the
circumference of the circle then represents a state of stress on some plane

through C.




Mohr's stress circle.

o
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|
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o
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Proof

Consider any point Q on the circumference of the circle, such that PQ makes an angle

260 with BC, and drop a perpendicular from Q to meetthe a axis at N.

;

e ——

Coordinates of Q:

X

1
ON = OP+ PN = — (o +ay)+Rcos(20—,B)
2

— (o, +0,)+Rcos20cospf + Rsin268sin S

X

1
Rcosp=—(o,-0,) and Rsing=r1
2

1
ON= —(o,+0,)+ — (o, —0o,)cos20+ 7  sin26
2

O TRy




Prootf Contd.

On inspection this is seen to be eqn. (4.1) for the direct stress o, on the plane inclined

at @ to BC in the figure for the two-dimensional complex system.

Similarly,

ON sin (29 -p)

:Rsinzgcosﬂ -Rcosze sinf
= —(o,-0,)sin20 - r_cos260
2 X y Xy
Again, on inspection this is seen to be eqgn. (4.2) for the shear stres%y on the plane
0
inclined at to BC.




Note

Thus the coordinates of Q are the normal and shear stresses on a plane

nclined at & to BC in the original stress system.

N.B. - Single angle BCPQ is 20 on Mohr's circle and not? | itis evident that angles
are doubled on Mohr's circle. This is the only difference, however, as they are
measured in the same direction and from the same plane in both figures (in this case
counterclockwise from

~BC).




Further Notes on Mohr’s Circle

Further points to note are:

(1) The direct stress is a maximum when Q is at M, i.e. OM is the length representing
the maximum principal stress o, and 20 | gives the angle of the plane9 1 from
BC. Similarly, OL is the other principal stress.

(2) The maximum shear stress is given by the highest point on the circle and is

represented by the radius of the circle. This follows since shear stresses and

complementary shear stresses have the same value; therefore the centre of the

circle will always lie on theod,; axis midway between 9 and o,

(3) From the above point the direct stress on the plane of maximum shear must be

midway between @ and o




Further Notes on Mohr Circle Contd.

(4) The shear stress on the principal planes is zero.
(5) Since the resultant of two stresses at 90° can be found from the parallelogram of
vectors as the diagonal, as shown in Figure below, the resultant stress on the

plane at 9 to BC is given by OQ on Mohr's circle.

Resultant stress 0, on any plane.




The graphical method of solution of complex stress
problems using Mohr's circle is a very powerful
technique since all the information relating to any
plane within the stressed element is contained in
the single construction.

It thus provides a convenient and rapid means of
solution which is less prone to arithmetical errors
and is highly recommended.



