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COURSE GOALS

This course has two specific goals:

 (i) To introduce students to concepts of stresses and

strain; shearing force and bending; as well as torsion

and deflection of different structural elements.

 (ii) To develop theoretical and analytical skills relevant

to the areas mentioned in (i) above.



COURSE OUTLINE

UNIT TITLE CONTENTS

I DEFORMATION OF 
SOLIDS

Introduction to Rigid and Deformable bodies –
properties, Stresses - Tensile, Compressive and
Shear, Deformation of simple and compound bars
under axial load – Thermal stress – Elastic constants
– Volumetric Strain, Strain energy and unit strain
energy

II TORSION Introduction - Torsion of Solid and hollow circular
bars – Shear stress distribution – Stepped shaft –
Twist and torsion stiffness – Compound shafts –
Springs – types - helical springs – shear stress and
deflection in springs

III BEAMS Types : Beams , Supports and Loads – Shear force
and Bending Moment – Cantilever, Simply
supported and Overhanging beams – Stresses in
beams – Theory of simple bending – Shear stresses in
beams – Evaluation of ‘I’, ‘C’ & ‘T’ sections



COURSE OUTLINE

UNIT TITLE CONTENTS

IV DEFLECTION OF 
BEAMS

Introduction - Evaluation of beam deflection and
slope: Macaulay Method and Moment-area Method

V ANALYSIS OF 
STRESSES IN TWO 

DIMENSIONS

Biaxial state of stresses – Thin cylindrical and
spherical shells – Deformation in thin cylindrical and
spherical shells – Principal planes and stresses –
Mohr’s circle for biaxial stresses – Maximum shear
stress - Strain energy in bending and torsion

TEXT BOOKS

•Bansal, R.K., A Text Book of Strength of Materials, Lakshmi Publications Pvt. Limited, New Delhi, 1996
•Ferdinand P.Beer, and Rusell Johnston, E., Mechanics of Materials, SI Metric Edition, McGraw Hill, 1992 



Course Objectives

Upon successful completion of this course, students should be

able to:

 (i) Understand and solve simple problems involving stresses and
strain in two and three dimensions.

 (ii) Understand the difference between statically determinate and
indeterminate problems.

 (iv) Analyze stresses in two dimensions and understand the
concepts of principal stresses and the use of Mohr circles to
solve two-dimensional stress problems.



COURSE OBJECTIVES CONTD.

 (v) Draw shear force and bending moment diagrams of simple

beams and understand the relationships between loading

intensity, shearing force and bending moment.

 (vi) Compute the bending stresses in beams with one or two

materials.

 (vii) Calculate the deflection of beams using the direct integration

and moment-area method.



Teaching Strategies

 The course will be taught via Lectures. Lectures will also involve

the solution of tutorial questions. Tutorial questions are designed

to complement and enhance both the lectures and the students

appreciation of the subject.

 Course work assignments will be reviewed with the students.



UNITS:



STRESS AND 
STRAIN 

RELATIONS

UNIT I



DIRECT OR NORMAL STRESS

 When a force is transmitted through a body, the body
tends to change its shape or deform. The body is
said to be strained.

 Direct Stress = Applied Force (F)

Cross Sectional Area (A)

 Units: Usually N/m2 (Pa), N/mm2, MN/m2, GN/m2

or N/cm2

 Note: 1 N/mm2 = 1 MN/m2 = 1 MPa



Direct Stress Contd.

 Direct stress may be tensile or compressive and

result from forces acting perpendicular to the

plane of the cross-section




Tension

Compression



Tension and Compression



Direct or Normal Strain

 When loads are applied to a body, some deformation will occur

resulting to a change in dimension.

 Consider a bar, subjected to axial tensile loading force, F. If the bar

extension is dl and its original length (before loading) is L, then tensile

strain is:

dl

FF

L





Direct Strain (     )   = Change in Length

Original Length

i.e.        = dl/L



Direct or Normal Strain Contd.

 As strain is a ratio of lengths, it is dimensionless.

 Similarly, for compression by amount, dl:

Compressive strain = - dl/L

 Note: Strain is positive for an increase in dimension

and negative for a reduction in dimension.



Shear Stress and Shear Strain

 Shear stresses are produced by equal and opposite parallel

forces not in line.

 The forces tend to make one part of the material slide over the

other part.

 Shear stress is tangential to the area over which it acts.



Ultimate Strength

The strength of a material is a measure of the
stress that it can take when in use. The ultimate
strength is the measured stress at failure but this
is not normally used for design because safety
factors are required. The normal way to define a
safety factor is :

stressePermissibl

stressUltimate

loadedwhen stress

failureat stress
 = factorsafety 



Strain

We must also define strain. In engineering this is not a
measure of force but is a measure of the deformation
produced by the influence of stress. For tensile and
compressive loads:

Strain is dimensionless, i.e. it is not measured in metres,
killogrammes etc.

For shear loads the strain is defined as the angle  This
is measured in radians

s tr a in      =  
in c r e a s e  in  le n g th   x

o r ig in a l le n g th   L


sh e a r  s tra in         
sh e a r  d isp la c e m e n t  x

w id th   L
 



Shear stress and strain

Shear force

Shear Force

Area resisting 

shear
Shear displacement (x)

Shear strain is angle L



Shear Stress and Shear Strain Contd.

P Q

S R

F

D D’

A B

C C’

L

x



Shear strain is the distortion produced by shear stress on an element

or rectangular block as above. The shear strain, (gamma) is

given as:

= x/L = tan 





Shear Stress and Shear Strain Concluded

 For small       ,  

 Shear strain then becomes the change in the right 

angle.  

 It is dimensionless and is measured in radians.

  



Elastic and Plastic deformation

Stress

Strain

Stress

Strain

Permanent 

Deformation

Elastic deformation Plastic deformation



Modulus of Elasticity

If the strain is "elastic" Hooke's law may be used to
define

Young's modulus is also called the modulus of
elasticity or stiffness and is a measure of how much
strain occurs due to a given stress. Because strain is
dimensionless Young's modulus has the units of
stress or pressure

A

L
  

x

W
  =  

Strain

Stress
 = E   Modulus Youngs 



How to calculate deflection if the proof stress is 
applied and then partially removed.

Yield

0.2% proof stress

Stress

Strain0.2%

Plastic

Failures

0.002      s/E

If a sample is loaded up to the 0.2% proof stress and then unloaded to a stress s 

the strain x = 0.2% + s/E   where E is the Young’s modulus



Volumetric Strain

 Hydrostatic stress refers to tensile or
compressive stress in all dimensions within or
external to a body.

 Hydrostatic stress results in change in volume
of the material.

 Consider a cube with sides x, y, z. Let dx, dy,
and dz represent increase in length in all
directions.

 i.e. new volume = (x + dx) (y + dy) (z + dz)



Volumetric Strain Contd.

 Neglecting products of small quantities:

 New volume = x y z + z y dx + x z dy + x y dz

 Original volume = x y z

 = z y dx + x z dy + x y dz

 Volumetric strain, = z y dx + x z dy + x y dz

x y z

 = dx/x + dy/y + dz/z

V


v


v

   
v x y z

  



Elasticity and Hooke’s Law

 All solid materials deform when they are 

stressed, and as stress is increased, 

deformation also increases.  

 If a material returns to its original size and 

shape on removal of load causing 

deformation, it is said to be elastic. 

 If the stress is steadily increased, a point is 

reached when, after the removal of load, not 

all the induced strain is removed.  

 This is called the elastic limit. 



Hooke’s Law

 States that providing the limit of proportionality of a
material is not exceeded, the stress is directly
proportional to the strain produced.

 If a graph of stress and strain is plotted as load is
gradually applied, the first portion of the graph will
be a straight line.

 The slope of this line is the constant of
proportionality called modulus of Elasticity, E or
Young’s Modulus.

 It is a measure of the stiffness of a material.



Hooke’s   Law

M o d u lu s  o f  E la s t ic ity ,  E  =  
D ire c t s tr e s s

D ire c t s tra in





 

 

A ls o :   F o r S h e a r s tre s s : M o d u lu s  o f  r ig id ity  o r  s h e a r m o d u lu s , G  =   
S h e a r s tr e s s

S h e a r s tra in





 

Also: Volumetric strain, is proportional to hydrostatic

stress, within the elastic range

i.e. : called bulk modulus.


v



 /
v

K



Stress-Strain Relations of Mild Steel



Equation For Extension

F ro m  th e  a b o v e  e q u a tio n s :  

 

E
F A

d l L

F L

A d l

d l
F L

A E

  







/

/
 

This equation for extension is 

very important



Extension For Bar of Varying Cross Section

 

F o r  a  b a r  o f v a ry in g  c ro s s  s e c tio n :  

 

P   

                      A 1                                A 2                            A 3                                      P  

  

           L 1                                   L 2                            L 3  

         

 

                      d l
F

E

L

A

L

A

L

A
  

L
N
M

O
Q
P1

1

2

2

3

3

 



Factor of Safety

 The load which any member of a machine carries

is called working load, and stress produced by this

load is the working stress.

 Obviously, the working stress must be less than

the yield stress, tensile strength or the ultimate

stress.

 This working stress is also called the permissible

stress or the allowable stress or the design stress.



Factor of Safety Contd.

 Some reasons for factor of safety include the

inexactness or inaccuracies in the estimation of

stresses and the non-uniformity of some

materials.

F a c to r o f  s a fe ty  =    
U ltim a te o r y ie ld s tre ss

D e s ig n o r w o rk in g s tre ss
 

Note: Ultimate stress is used for materials e.g.

concrete which do not have a well-defined yield point,

or brittle materials which behave in a linear manner up

to failure. Yield stress is used for other materials e.g.

steel with well defined yield stress.



Results From a Tensile Test

(a )  M o d u lu s  o f  E la s t ic ity ,        E
S tr e s s u p to i t o f p r o p o r t io n a l i ty

S tr a in


l im
 

(b )  Y ie ld  S tre s s  o r P ro o f  S tre s s   (S e e  b e lo w )  

(c )  P e rc e n ta g e  e lo n g a t io n   =     
In c re a se in g a u g e le n g th

O r ig in a l g a u g e le n g th
x 1 0 0  

(d )  P e rc e n ta g e  re d u c t io n  in  a re a   =   
O rig in a l a re a a re a a t fra c tu re

O r ig in a l a re a
x


1 0 0  

(e )  T e n s ile  S tre n g th   =   
M a x im u m lo a d

O r ig in a l c ro ss t io n a l a re ase c
 

T h e  p e rc e n ta g e  o f  e lo n g a t io n  a n d  p e rc e n ta g e  re d u c t io n  in  a re a  g iv e  a n  in d ic a t io n  o f  th e  

d u c t ility  o f  th e  m a te r ia l  i.e .  its  a b ility  to  w ith s ta n d  s tra in  w ith o u t f ra c tu re  o c c u rr in g .  



Proof Stress

 High carbon steels, cast iron and most of the non-

ferrous alloys do not exhibit a well defined yield as

is the case with mild steel.

 For these materials, a limiting stress called proof

stress is specified, corresponding to a non-

proportional extension.

 The non-proportional extension is a specified

percentage of the original length e.g. 0.05, 0.10,

0.20 or 0.50%.



Determination of Proof Stress

PProof Stress

Stress

The proof stress is obtained by drawing AP parallel to the initial slope of the

stress/strain graph, the distance, OA being the strain corresponding to the

required non-proportional extension e.g. for 0.05% proof stress, the strain is

0.0005.

A
Strain



Thermal Strain

M o s t s tru c tu ra l m a te r ia ls  e x p a n d  w h e n  h e a te d ,  

in  a c c o rd a n c e  to  th e  la w :       T    

w h e re     is  lin e a r s tra in  a n d   

  is  th e  c o e f f ic ie n t o f  lin e a r e x p a n s io n ;  

T  is  th e  r is e  in  te m p e ra tu re .   

T h a t is  fo r a  ro d  o f  L e n g th , L ;  

if  its  te m p e ra tu re  in c re a s e d  b y  t ,   th e  e x te n s io n ,  

  d l =  


 L  T .  



Thermal Strain Contd.

A s  in  th e  c a s e  o f  la te ra l s tra in s , th e rm a l s tra i n s   

d o  n o t in d u c e  s tre s s e s  u n le s s  th e y  a re  c o n s tra in e d .  

T h e  to ta l s tra in  in  a  b o d y  e x p e r ie n c in g  th e rm a l s tre s s   

m a y  b e  d iv id e d  in to  tw o  c o m p o n e n ts :   

S tra in  d u e  to  s tre s s ,    a n d   

T h a t d u e  to  te m p e ra tu re ,  T .    

 T h u s :      


 =        +     T  

 


 =     




E
T

 



Principle of Superposition

 It states that the effects of several actions taking
place simultaneously can be reproduced exactly
by adding the effect of each action separately.

 The principle is general and has wide applications
and holds true if:

 (i) The structure is elastic

 (ii) The stress-strain relationship is linear

 (iii) The deformations are small.



General Stress-Strain Relationships



Relationship between Elastic Modulus (E) and Bulk 
Modulus, K

It  h a s  b e e n  s h o w n  th a t :      
v x y z
    

    

   

   




 




   


















x x y z

x y z

x

y z

v x y z

v

v

v

E

F o r h y d ro s ta t ic s tre s s

i e
E E

S im ila r ly a n d a re e a c h
E

V o lu m e tr ic s tra in

E

E

B u lk M o d u lu s K
V o lu m e tr ic o r h y d ro s ta t ic s tre s s

V o lu m e tr ic s tra in

i e E K a n d K
E

  

  

   



   

 

 

 

  


1

1
2 1 2

1 2

3
1 2

3
1 2

3 1 2
3 1 2

( )

,

. .

,

,

. .



Compound Bars

A  c o m p o u n d  b a r is  o n e  c o m p ris in g  tw o  o r m o re  p a ra lle l e le m e n ts , o f  d if fe re n t m a te r ia ls ,  

w h ic h  a re  f ix e d  to g e th e r a t th e ir  e n d .  T h e  c o m p o u n d  b a r m a y  b e  lo a d e d  in  te n s io n  o r 

c o m p re s s io n .               

                                                            1              2  

 

            F                                           F  

 

 2  

 

S e c t io n  th ro u g h  a  ty p ic a l c o m p o u n d  b a r c o n s is t in g  o f  a  c irc u la r b a r (1 ) s u rro u n d e d  b y  a  

tu b e  (2 )  



Temperature stresses in compound 
bars

 

                              1                                  
1

 

 2                
2

 

                                      L  

 (a )  L 1 T  

            1  

                      L 2 T  

 2  {b }  
F L

A E
1 1

 

 F  1                                                       F  

 

 F  2  F  

 (c )                                           

F L

A E
2 2

 

  

 



Temperature Stresses Contd.

F re e  e x p a n s io n s  in  b a rs  (1 )  a n d  (2 )  a re  L T a n d L T 
1 2

  re s p e c t iv e ly .    

D u e  to  e n d  f ix in g  fo rc e , F :   th e  d e c re a s e  in  le n g th  o f  b a r ( 1 )  is   

F L

A E
1 1

  a n d  th e  in c re a s e  in  le n g th  o f  (2 )  is   
F L

A E
2 2

 .      

 A t  E q u ilib r iu m :  

 

L T
F L

A E
L T

F L

A E

i e F
A E A E

T

i e A
A E A E

E E A A
T

T A E E

A E A E

T A E E

A E A E

 

 

  


 


 

1

1 1

2

2 2

1 1 2 2

1 2

1 1

2 2 1 1

1 2 1 2

1 2

1

1 2 2 1 2

1 1 2 2

2

1 2 1 1 2

1 1 2 2

1 1

  

  

L
N
M

O
Q
P 











. . [ ] ( )

. . ( )

( )

( )

 

N o te :   A s  a  re s u lt  o f  F o rc e , F , b a r (1 )  w ill b e  in  c o m p re s s io n  w h ile  (2 )  w ill b e  in  te n s io n .  

 

 

                              1                                  
1

 

 2                
2

 

                                      L  

 (a )  L 1 T  

            1  

                      L 2 T  

 2  {b }  
F L

A E
1 1

 

 F  1                                                       F  

 

 F  2  F  

 (c )                                           

F L

A E
2 2

 

  

 



Example

 A steel tube having an external diameter of 36 mm and an
internal diameter of 30 mm has a brass rod of 20 mm
diameter inside it, the two materials being joined rigidly at
their ends when the ambient temperature is 18 0C.
Determine the stresses in the two materials: (a) when the
temperature is raised to 68 0C (b) when a compressive
load of 20 kN is applied at the increased temperature.



Example Contd.

 For brass: Modulus of elasticity = 80 GN/m2;

Coefficient of expansion = 17 x 10 -6 /0C

 For steel: Modulus of elasticity = 210 GN/m2;

Coefficient of expansion = 11 x 10 -6 /0C



Solution

   

    

         

         3 0                B ra s s   ro d                       2 0        3 6  

 

 

 

       

             S te e l  tu b e  

 

A re a  o f  b ra s s  ro d  (A b )  =     

 x
m m

2 0

4
3 1 4 1 6

2

2
 .  

A re a  o f  s te e l tu b e  (A s )  =     

 x
m m

( )
.

3 6 3 0

4
3 1 1 0 2

2 2

2
  

A E x m x x N m x N
s s

 


3 1 1 0 2 1 0 2 1 0 1 0 0 6 5 3 1 4 2 1 0
6 2 9 2 8

. / .
 

1
1 5 3 1 0 6 1 0

8

A E
x

s s




.  



Solution Contd.

A E x m x x N m x N
b b

 


3 1 4 1 6 1 0 8 0 1 0 0 2 5 1 3 2 7 1 0
6 2 9 2 8

. / .  

1
3 9 7 8 8 7 3 6 1 0

8

A E
x

b b




.  

T x x
b s

( ) ( )    
 

5 0 1 7 1 1 1 0 3 1 0
6 4

 

W ith  in c re a s e  in  te m p e ra tu re , b ra s s  w ill b e  in  c o m p re s s io n  w h ile   

s te e l w ill b e  in  te n s io n .  T h is  is  b e c a u s e  e x p a n d s  m o re  th a n  s te e l.  

i e F
A E A E

T

s s b b

b s
. . [ ] ( )

1 1
   

 

i.e .   F [1 .5 3 1 0 6  +  3 .9 7 8 8 7 3 6 ] x  1 0
 -8

 =   3  x  1 0  
-4  

F   =   5 4 4 4 .7 1  N  



Solution Concluded

S tre s s  in  s te e l tu b e  =       
5 4 4 4 7 1

3 1 1 0 2
1 7 5 1 1 7 5 1

2

2 2.

.
. / . / ( )

N

m m
N m m M N m T e n s io n   

S tre s s  in  b ra s s  ro d   =       
5 4 4 4 7 1

3 1 4 1 6
1 7 3 3 1 7 3 3

2

2 2.

.
. / . / ( )

N

m m
N m m M N m C o m p re s s io n   

(b )   S tre s s e s  d u e  to  c o m p re s s io n  fo rc e , F ’ o f  2 0  k N  


s

s

s s b b

F E

E A E A

x N x x N m

x
M N m C o m p r e s s io n







' /

. .
. / ( )

2 0 1 0 2 1 0 1 0

0 6 5 3 1 4 2 0 2 5 1 3 2 7 1 0
4 6 4 4

3 9 2

8

2

 


b

b

s s b b

F E

E A E A

x N x x N m

x
M N m C o m p r e s s io n







' /

. .
. / ( )

2 0 1 0 8 0 1 0

0 6 5 3 1 4 2 0 2 5 1 3 2 7 1 0
1 7 6 9

3 9 2

8

2

 

R e s u lta n t s tre s s  in  s te e l tu b e  =  -  4 6 .4 4  +  1 7 .5 1  =  2 8 .9 3  M N /m
2
  (C o m p re s s io n )  

R e s u lta n t s tre s s  in  b ra s s  ro d   =  -1 7 .6 9  -  1 7 .3 3  =  3 5 .0 2  M N /m
2
 (C o m p re s s io n )  

 



Example

 A composite bar, 0.6 m long comprises a steel bar 0.2
m long and 40 mm diameter which is fixed at one end
to a copper bar having a length of 0.4 m.

 Determine the necessary diameter of the copper bar
in order that the extension of each material shall be
the same when the composite bar is subjected to an
axial load.

 What will be the stresses in the steel and copper
when the bar is subjected to an axial tensile loading of
30 kN? (For steel, E = 210 GN/m2; for copper, E = 110
GN/m2)



Solution

              0 .2  m m  

  0 .4  m m  

         F              4 0  m m  d ia                    d                                                 F  

                        

 L e t th e  d ia m e te r o f  th e  c o p p e r b a r b e  d  m m  

S p e c if ie d  c o n d it io n :  E x te n s io n s  in  th e  tw o  b a rs  a re  e q u a l  

 

d l d l

d l L
E

L
F L

A E

c s


  
  

T h u s :   

F L

A E

F L

A E

c c

c c

s s

s s

  



Solution Concluded

A ls o :  T o ta l f o rc e , F  is  t ra n s m it te d  b y  b o th  c o p p e r a n d  s te e l  

       i.e .   F c  =  F s  =  F  

   i e
L

A E

L

A E

c

c c

s

s s

. .   

S u b s t itu te  v a lu e s  g iv e n  in  p ro b le m :  

0 4

4 1 1 0 1 0

0 2

4 0 0 4 0 2 1 0 1 0
2 2 9 2 2 9 2

.

/ /

.

/ . /

m

d m x N m

m

x x x N m 
  

d
x x

m d m m m
2

2

22 2 1 0 0 0 4 0

1 1 0
0 0 7 8 1 6 7 8 1 6  

.
; . . .  

T h u s  fo r  a  lo a d in g  o f  3 0  k N  

S tre s s  in  s te e l,    


s

x N

x x
M N m 



3 0 1 0

4 0 0 4 0 1 0
2 3 8 7

3

2 6

2

/ .
. /  

S tre s s  in  c o p p e r,  


c

x N

x x
M N m 



3 0 1 0

4 0 0 7 8 1 6 1 0
9

3

2 6

2

/ .
/  

 



Elastic Strain Energy

 If a material is strained by a gradually applied load,

then work is done on the material by the applied

load.

 The work is stored in the material in the form of

strain energy.

 If the strain is within the elastic range of the

material, this energy is not retained by the material

upon the removal of load.



Elastic Strain Energy Contd.

F ig u re  b e lo w  s h o w s  th e  lo a d -e x te n s io n  g ra p h  o f  a  u n ifo rm  b a r.    

T h e  e x te n s io n  d l is  a s s o c ia te d  w ith  a  g ra d u a lly  a p p lie d  lo a d , P   

w h ic h  is  w ith in  th e  e la s t ic  ra n g e .  T h e  s h a d e d  a re a  re p re s e n ts   

th e  w o rk  d o n e  in  in c re a s in g  th e  lo a d  f ro m  z e ro  to  its  v a lu e  

 L o a d  

             P  

 

 

                                                                       E x te n s io n  

    d l 

W o rk  d o n e  =  s tra in  e n e rg y  o f  b a r =  s h a d e d  a re a  



Elastic Strain Energy Concluded

W  =  U  =  1 /2  P  d l          (1 )  

 S tre s s ,    =  P /A   i.e   P  =    A  

 S tra in   =   S tre s s /E  

 i.e  d l/L   =    /E  ,     d l =    ( L )/E              L =    o r ig in a l le n g th  

S u b s t itu t in g  fo r  P  a n d  d l in  E q n  (1 ) g iv e s :  

 W  =  U  =  1 /2  


 A  .  (


 L ) /E   =   
 2

/2 E  x  A  L  

A  L    is  th e  v o lu m e  o f  th e  b a r.  

 

 i.e              U  =  
 2

/2 E  x  V o lu m e  

 

 T h e  u n its  o f  s tra in  e n e rg y  a re  s a m e  a s  th o s e  o f  w o rk  i.e .  J o u le s .  S tra in  e n e rg y  

p e r u n it  v o lu m e , 


2
/2 E  is  k n o w n  a s  re s ilie n c e .  T h e  g re a te s t a m o u n t o f  e n e rg y  th a t c a n  

s to re d  in  a  m a te r ia l w ith o u t p e rm a n e n t s e t o c c u rr in g  w ill b e  w h e n  


 is  e q u a l to  th e  

e la s t ic  lim it  s tre s s .  



TORSION

UNIT 2

















TORSION OF HOLLOW SHAFTS:  
From the torsion of solid shafts of circular x – section , it is seen that only the material

atthe outer surface of the shaft can be stressed to the limit assigned as an allowable

working stresses. All of the material within the shaft will work at a lower stress and is not

being used to full capacity. Thus, in these cases where the weight reduction is important, it

is advantageous to use hollow shafts. In discussing the torsion of hollow shafts the same

assumptions will be made as in the case of a solid shaft. The general torsion equation as we

have applied in the case of torsion of solid shaft will hold good







Derivation of the Formula :  

In order to derive a necessary formula which governs the behaviour of springs,

consider a closed coiled spring subjected to an axial load W.

Let 

W = axial load  

D = mean coil diameter  

d = diameter of spring wire  

n = number of active coils  

C = spring index = D / d For circular wires  

l = length of spring wire 

G = modulus of rigidity  

x = deflection of spring  

q = Angle of twist  

when the spring is being subjected to an axial load to the wire of the spring gets be 

twisted like a shaft.  

If q is the total angle of twist along the wire and x is the deflection of spring under 

the 

action of load W along the axis of the coil, so that  

x = D / 2 . q  

again l = p D n [ consider ,one half turn of a close coiled helical spring ] 



Assumptions: (1) The Bending & shear effects may be neglected  

(2) For the purpose of derivation of formula, the helix angle is 

considered to be 

so small that it may be neglected.  

Any one coil of a such a spring will be assumed to lie in a plane which is 

nearly ^r 

to the 

axis of the spring. This requires that adjoining coils be close together. With this 

limitation, a section taken perpendicular to the axis the spring rod becomes 

nearly 

vertical. Hence to maintain equilibrium of a segment of the spring, only a 

shearing force 

V = F and Torque T = F. r are required at any X – section. In the analysis of 

springs it is 

customary to assume that the shearing stresses caused by the direct shear force 

is 

uniformly distributed and is negligible 

so applying the torsion formula. 







BEAMS

UNIT 3



Cantilever Beam











BENDING MOMENT





Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly

simplified if the relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length.

Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x'

from the origin ‘0'.



The forces acting on the free body diagram of the detached portion of this loaded beam 

are the following  

•  The shearing force F and F+ dF at the section x and x + dx respectively. 

•The bending moment at the sections x and x + dx be M and M + dM respectively.  

•  Force due to external loading, if ‘w' is the mean rate of loading per unit length then the 

total loading on this slice of length dx is w. dx, which is approximately acting through the 

centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly 

through the centre ‘c'.  

This small element must be in equilibrium under the action of these forces and couples.  

Now let us take the moments at the point ‘c'. Such that 



A cantilever of length carries a concentrated load ‘W' at its free end. 

Draw shear force and bending moment.  

Solution:  

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x) -

ve sign means the shear force to the left of the x-section are in downward direction and therefore

negative. Taking moments about the section gives (obviously to the left of the section) M = -Wx (-ve

sign means that the moment on the left hand side of the portion is in the anticlockwise direction and is

therefore taken as –ve according to the sign convention) so that the maximum bending moment occurs

at the fixed end i.e. M = -W l From equilibrium consideration, the fixing moment applied at the fixed

end is Wl and the reaction is W. the shear force and bending moment are shown as,



Simply supported beam subjected to a central load (i.e. load acting at the mid-way) 



.For B.M diagram:  

If we just take the moments to the left of the cross-

section, 



A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

Here the cantilever beam is subjected to a uniformly distributed load whose

intensity is given w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we

just take the resultant of all the forces on the left of the X-section, then





Simply supported beam subjected to a uniformly distributed load U.D.L





An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 

mm is used as simply supported beam for a span of 7 m. The girder carries a distributed 

load of 5 KN /m and a concentrated load of 20 KN at mid-span.  

Determine the  

(i). The second moment of area of the cross-section of the girder  

(ii). The maximum stress set up. 

Solution:  

The second moment of area of the cross-section can be determained as follows :

For sections with symmetry about the neutral axis, use can be made of standard I value for

a rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided

into convenient rectangles for each of which the neutral axis passes through the centroid.

Example in the case enclosing the girder by a rectangle

















DEFLECTION OF BEAMS

UNIT 4



Deflection of Beams

The deformation of a beam is usually expressed in terms of its deflection from its original

unloaded position. The deflection is measured from the original neutral surface of the beam

to the neutral surface of the deformed beam. The configuration assumed by the deformed

neutral surface is known as the elastic curve of the beam.



METHODS OF DETERMINING DEFLECTION OF BEAMS

 Double integration method

 Moment area method

 Conjugate method

 Macaulay's method





Example - Simply supported beam

Consider a simply supported uniform section beam with a single load F at the

centre. The beam will be deflect symmetrically about the centre line with 0 slope

(dy/dx) at the centre line. It is convenient to select the origin at the centre line.



Moment Area Method

This is a method of determining the change in slope or the deflection between two

points on a beam. It is expressed as two theorems...

Theorem 1

If A and B are two points on a beam the change in angle (radians) between the

tangent at A and the tangent at B is equal to the area of the bending moment

diagram between the points divided by the relevant value of EI (the flexural

rigidity constant).

Theorem 2

If A and B are two points on a beam the displacement of B relative to the tangent

of the beam at A is equal to the moment of the area of the bending moment

diagram between A and B about the ordinate through B divided by the relevant

value of EI (the flexural rigidity constant).



Examples ..Two simple examples are provide below to illustrate these theorems

Example 1) Determine the deflection and slope of a cantilever as shown..





Moment Area Method

This method is based on two theorems which are stated through an example. Consider a

beam AB subjected to some arbitrary load as shown in Figure 1.

Let the flexural rigidity of the beam be EI. Due to the load, there would be bending

moment and BMD would be as shown in Figure 2. The deflected shape of the beam which

is the elastic curve is shown in Figure 3. Let C and D be two points arbitrarily chosen on

the beam. On the elastic curve, tangents are drawn at deflected positions of C and D. The

angles made by these tangents with respect to the horizontal are marked as and . These

angles are nothing but slopes. The change is the angle between these two tangents is

demoted as . This change in the angel is equal to the area of the diagram between the two

points C and D. This is the area of the shaded portion in figure 2.

































Problem 1 : For the Cantilever beam shown in figure, compute deflection and rotation at 

(i) the free end 

(ii) under the load























Macaulay's Methods

If the loading conditions change along the span of beam, there is

corresponding change in moment equation. This requires that a separate moment

equation be written between each change of load point and that two integration

be made for each such moment equation. Evaluation of the constants introduced

by each integration can become very involved. Fortunately, these complications

can be avoided by writing single moment equation in such a way that it becomes

continuous for entire length of the beam in spite of the discontinuity of loading.

Note : In Macaulay's method some author's take the help of unit function approximation

(i.e. Laplace transform) in order to illustrate this method, however both are essentially the

same.



Procedure to solve the problems

(i). After writing down the moment equation which is valid for all values of ‘x' i.e.

containing pointed brackets, integrate the moment equation like an ordinary

equation.

(ii). While applying the B.C's keep in mind the necessary changes to be made

regarding the pointed brackets.

llustrative Examples :

1. A concentrated load of 300 N is applied to the simply supported beam as shown in

Fig.Determine the equations of the elastic curve between each change of load point and

the maximum deflection in the beam.



To evaluate the two constants of integration. Let us apply the following

boundary conditions:

1. At point A where x = 0, the value of deflection y = 0. Substituting these values

in Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.

substituting these values in the deflection Eq. (3), we obtain



Continuing the solution, we assume that the maximum deflection will occur in the segment AB. Its

location may be found by differentiating Eq. (5) with respect to x and setting the derivative to be equal

to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero and solving for

the point of zero slope.

50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does not yield a

value < 2 m then we have to try the other equations which are valid for segment BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs in

this region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in Eq (5),

which yields



The negative value obtained indicates that the deflection y is downward from the

x axis.quite usually only the magnitude of the deflection, without regard to sign, is

desired; this is denoted by d, the use of y may be reserved to indicate a directed

value of deflection.















Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load

being applied axially through centroid] reached. There is always some eccentricity and initial

curvature present. These factors needs to be accommodated in the required formula's.

It is realized that, due to the above mentioned imperfections the strut will suffer a deflection

which increases with load and consequently a bending moment is introduced which causes failure

before the Euler's load is reached. Infact failure is by stress rather than by buckling and the deviation

from the Euler value is more marked as the slenderness-ratio l/k is reduced. For values of l/k < 120

approx, the error in applying the Euler theory is too great to allow of its use. The stress to cause

buckling from the Euler formula for the pin ended strut is



ANALYSIS OF STRESSESS IN TWO 
DIMENSIONS

UNIT 5



4.1 DERIVATION OF GENERAL 
EQUATIONS





R e s o lv in g  p e rp e n d ic u la r  to  E C :  

 


  x  1  x  E C   =    x   x   B C   x   1   x   c o s    

                             +     y   x   E B   x   1   x   s in    

                             +    x y   x   1   x   E B   x   c o s


   

                             +      


x y   x   1   x   B C   x   s in


   

N o te  th a t  E B   =   E C  s in  


  a n d          B C    =   E C  c o s


 


   x   E C   =    x   x   E C   c o s

2
 


   +    
y   x   E C    s in  

2


   

                      +   


x y   x   E C   x    s in  


 c o s  


                                            

                       +     


x y   x   E C   s in   



 c o s



    






    =    x   c o s
2
    +     y   s in  

2
    +    2    x y   s in  c o s   

R e c a ll th a t  :    c o s
2
     =   (1  +  c o s  2 ) /2 ,     s in  

2    =   (1  –  c o s  2 ) /2   a n d   

                    s in  2   =  2  s in    c o s    


     =    x /2  (1  +   c o s  2


)    +     y /2   (1  -    c o s  2


)    +      x y   s in  2


  

       
   

  









x y x y

x y

2 2
2 2c o s s in       … … … … … … …   (4 .1 )  

R e so lv in g  p a ra lle l to  E C :  


  x  1  x  E C   =    x   x   B C   x   1   x   s in  



   +    
y   x   E B   x   1   x   c o s  


   

                             +   


x y   x   1   x   E B   x   s in  



  +     


x y   x   1   x   B C   x   c o s  



   



Derivation of General Equation 
Concluded




  x   E C   =    x   x   E C   s in   c o s    -    y   x   E C    s in    c o s     +    


x y   x   E C   x    s in

2
      -      x y   x   E C    c o s

2
      


   =    x    s in    c o s    -    y    s in    c o s     +    x y    s in

2
    -    x y    c o s

2
      

R e c a ll t h a t  s in  2


  =   2  s in  


 c o s


 a n d    c o s  2


  =   c o s
2
 


  -   s in
2
 


 

                     
 

  






x y

x y

2
2 2s in c o s  … … … … … … … .  (4 .2 )  



SPECIAL CASES OF PLANE 
STRESS

T h e  g e n e r a l c a s e  o f  p la n e  s tr e s s  r e d u c e s  to  s im p le r  s ta te s  o f  

s tr e s s  u n d e r  s p e c ia l c o n d it io n s :  

 

4 .1 .1  U n ia x ia l S tre s s :   T h is  is  th e  s itu a t io n  w h e re  a ll th e  s tre s s e s  a c t in g  o n  th e  x y  

e le m e n t a re  z e ro  e x c e p t fo r  th e  n o rm a l s tr e s s   x,  th e n  th e  e le m e n t is  in  u n ia x ia l 

s tre s s .  T h e  c o rre s p o n d in g  tra n s fo rm a tio n  e q u a t io n s , o b ta in e d  b y  s e tt in g   y a n d  


xy  e q u a l to  z e ro  in  th e  E q u a t io n s  4 .1  a n d  4 .2  a b o v e :  

                                          


 



 
  

x x

2
1 2

2
2( c o s ) , s in  



Special Cases of Plane Stress Contd.



Maximum Shear Stress



Example



Solution



Principal Stresses and Maximum 
Shear Stresses



Principal Stresses and Maximum 
Shear Stresses Contd.

T h e  s o lu t io n  o f  e q u a t io n  4 .4  y ie ld s  tw o  v a lu e s  o f  2  s e p a ra te d  b y  1 8 0
o
,  i.e .  tw o  v a lu e s  

o f    s e p a ra te d  b y  9 0
o
.   T h u s  th e  tw o  p r in c ip a l s tre s s e s  o c c u r o n  m u tu a lly  p e rp e n d ic u la r  

p la n e s  te rm e d  p r in c ip a l p la n e s ,  

       S u b s t itu t in g  in  e q u a t io n  4 .1 :  


   








x y x y

2 2

( )

( )

 

  

x y

x y
x y



 
2 2

4

  +    x y   

2

4
2 2



  

x y

x y
x y( ) 

 

                       


 







x y

2

( )

( )

 

  

x y

x y
x y



 

2

2 2
2 4

  +      

2

4

2

2 2



  

x y

x y
x y( ) 

 

 

 


 







x y

2

1

2

4

4

2 2

2 2

( )

( )

  

  

x y
x y

x y
x y

 

 

    



Shear Stresses at Principal Planes 
are Zero

 1    o r    2    =   
 

  
x y

x y
x y


  

2

1

2
4

2 2
)                         … … .. (4 .5 )  

 

 T h e s e  a re  te rm e d  th e  p r in c ip a l s tre s s e s  o f  th e  s y s te m .   B y  s u b s t itu t i o n  fo r    

f ro m  e q u a t io n  4 .4  ,  in to  th e  s h e a r s tre s s  e x p re s s io n  (e q u a t io n  4 .2 ):  

 


 

  






x y

x y

2
2 2s in c o s  … … … … … … … .  (4 .2 )  


 





x y

2

2

4
2 2



  

xy

x y
xy( ) 

    -      x y   

( )

( )

 

  

x y

x y
x y



 
2 2

4

   

 





  

  

x y x y

x y
x y

( )

( )



 
2 2

4

    -       

  

  

x y x y

x y
x y

( )

( )



 
2 2

4

    =    0  



Principal Planes and Stresses Contd.

T h u s  a t p r in c ip a l p la n e s ,  


  =   0 .    S h e a r s tre s s e s  d o  n o t o c c u r a t  th e  p r in c ip a l p la n e s .  

T h e  c o m p le x  s tre s s  s y s te m  o f  F ig u re  4 .1  c a n  n o w  b e  re d u c e d  to  th e  e q u iv a le n t s y s te m  

o f  p r in c ip a l s tre s s e s  s h o w n  in  F ig u re  4 .2  b e lo w .  

 

 

 

 

 F ig u re  4 .3 :   P r in c ip a l p la n e s  a n d  s tre s s e s  

 



Equation For Maximum Shear Stress

F ro m  e q u a t io n  4 .3 , th e  m a x im u m  s h e a r s tre s s  p re s e n t in  th e  s y s te m  is  g iv e n  b y :  

 

   
m a x

( ) 
1

2
x y   =

1

2
4

2 2
  

x y
x y )  

a n d  th is  o c c u rs  o n  p la n e s  a t 4 5
o
 to  th e  p r in c ip a l p la n e s .  

 

N o te :   T h is  re s u lt  c o u ld  h a v e  b e e n  o b ta in e d  u s in g  a  s im ila r  p ro c e d u re  to  th a t u s e d  fo r 

d e te rm in in g  th e  p r in c ip a l s tre s s e s ,  i.e .   b y  d if fe re n t ia t in g  e x p re s s io n  4 .2 , e q u a t in g  to  

z e ro  a n d  s u b s t itu t in g  th e  re s u lt in g  e x p re s s i o n  fo r    


 



4.4  PRINCIPAL PLANE INCLINATION IN 

TERMS OF THE ASSOCIATED  PRINCIPAL 

STRESS
It  h a s  b e e n  s ta te d  in  th e  p re v io u s  s e c t io n  th a t e x p re s s io n  (4 .4 ),  n a m e ly   

                      ta n
( )

2
2




 




x y

x y

 

 y ie ld s  tw o  v a lu e s  o f  


,  i.e .  th e  in c lin a t io n  o f  th e  tw o  p r in c ip a l p la n e s  o n  w h ic h  th e  

p r in c ip a l s tre s s e s   1   o r   2 .     It   is  u n c e rta in , h o w e v e r,  w h ic h  s tre s s  a c ts  o n  w h ic h  

p la n e  u n le s s  e q n . (4 .1  )  is  u s e d , s u b s t itu t in g  o n e  v a lu e  o f   


 o b ta in e d  f ro m  e q n . (4 .4 ) 

a n d  o b s e rv in g  w h ic h  o n e  o f  th e  tw o  p r in c ip a l s tre s s e s  is  o b ta in e d . T h e  fo llo w in g  

a lte rn a t iv e  s o lu t io n  is  th e re fo re  to  b e  p re fe rre d .  



PRINCIPAL PLANE INCLINATION 
CONTD.

 Consider once again the equilibrium of a triangular

block of material of unit depth (Fig. 4.3); this time EC

is a principal plane on which a principal stress

acts, and the shear stress is zero (from the property

of principal planes).



PRINCIPAL PLANE INCLINATION 
CONTD.

 

Resolving forces horizontally,

(, x x BC x 1)  +   (   xy  x EB x 1) = (  p  x EC x l)  cos 

 x  EC cos  +     xy  x EC sin  =  p  x   EC cos 

 x  +    xy  tan  =   p

tan 
 





p x

xy

…  (4.7)

E



PRINCIPAL PLANE INCLINATION 
CONTD.

 Thus we have an equation for the inclination of the
principal planes in terms of the principal stress. If,
therefore, the principal stresses are determined and
substituted in the above equation, each will give the
corresponding angle of the plane on which it acts
and there can then be no confusion.



PRINCIPAL PLANE INCLINATION 
CONTD.

 The above formula has been derived with two tensile

direct stresses and a shear stress system, as shown

in the figure; should any of these be reversed in

action, then the appropriate minus sign must be

inserted in the equation.



Graphical Solution Using the Mohr’s 
Stress Circle

4 .5 . G R A P H IC A L  S O L U T IO N -M O H R 'S  S T R E S S  C IR C L E  

C o n s id e r  th e  c o m p le x  s tr e s s  s ys te m  o f F ig u r e  b e lo w . A s  s ta te d  

p r e v io u s ly  th is  r e p r e s e n ts  a  c o m p le te  s tr e s s  s ys te m  fo r  a n y  

c o n d it io n  o f  a p p lie d  lo a d  in  tw o  d im e n s io n s .  In  o r d e r  to  f in d  

g r a p h ic a lly  th e  d ir e c t s tr e s s    p  a n d  s h e a r  s tr e s s        o n  a n y  

p la n e  in c lin e d  a t      to  th e  p la n e  o n  w h ic h   x   a c ts , p r o c e e d  a s  

fo llo w s :  

(1 )  L a b e l th e  b lo c k  A B C D .  

(2 )  S e t u p  a x e s  fo r  d ire c t  s tre s s  (a s  a b s c is s a ) a n d  s h e a r s tre s s  (a s  o rd in a te )   

(3 )  P lo t  th e  s tre s s e s  a c t in g  o n  tw o  a d ja c e n t  f a c e s , e .g .  A B  a n d  B C ,  u s in g  th e  fo llo w in g  

s ig n  c o n v e n t io n s :  



Mohr’s Circle Contd.

 Direct stresses: tensile, positive; compressive,

negative;

 Shear stresses: tending to turn block clockwise,

positive; tending to turn block

counterclockwise, negative.

 This gives two points on the graph which may then

be labeled AB and BC respectively to denote

stresses on these planes



Mohr’s Circle Contd.

 

                                                         

                                                         F ig . 4 .5    M o h r 's  s tre s s  c irc le .  

 

(4 )  J o in  A B  a n d  B C .  

(5 )  T h e  p o in t  P  w h e re  th is  lin e  c u ts  th e  a  a x is  is  th e n  th e  c e n tre  o f  M o h r 's  c irc le ,  a n d  

th e  

lin e  is  th e  d ia m e te r;  th e re fo re  th e  c irc le  c a n  n o w  b e  d ra w n . E v e ry  p o in t  o n  th e  

c irc u m fe re n c e  o f  th e  c irc le  th e n  re p re s e n ts  a  s ta te  o f  s tre s s  o n  s o m e  p la n e  

th ro u g h  C . 

 


y


x y


x y


x

A B

CD




Mohr's stress circle.



Proof

C o n s id e r a n y  p o in t  Q  o n  th e  c irc u m fe re n c e  o f  th e  c irc le ,  s u c h  th a t P Q  m a k e s  a n  a n g le  

2   w ith  B C , a n d  d ro p  a  p e rp e n d ic u la r  f ro m  Q  to  m e e t th e  a  a x is  a t  N . 

 

C o o rd in a te s  o f  Q :  

O N O P P N R
x y

     
1

2
2( ) c o s ( )     

         

1

2
2 2( ) c o s c o s s in s in     

x y
R R    

            R a n d R
x y x y

c o s ( ) s in      
1

2
 

           
O N

x y x y x y
    

1

2

1

2
2 2( ) ( ) c o s s in      

 



Proof Contd.

O n  in s p e c t io n  th is  is  s e e n  to  b e  e q n .  (4 .1 )  fo r  th e  d ire c t s tre s s  


 o n  th e  p la n e  in c lin e d  

a t    to  B C  in  th e  f ig u re  fo r  th e  tw o -d im e n s io n a l c o m p le x  s y s te m .  

S im ila r ly ,  

 

Q N     s in  (  2   -   )  

       =  R  s in  2  


 c o s       -    R  c o s  2  


 s in    

            
1

2
2 2( ) s in c o s    

x y x y  

A g a in , o n  in s p e c t io n  th is  is  s e e n  to  b e  e q n .  (4 .2 )  fo r  th e  s h e a r s tre s s   
   o n  th e  p la n e  

in c lin e d  a t    


  to  B C .  



Note

T h u s  th e  c o o rd in a te s  o f Q  a re  th e  n o rm a l a n d  s h e a r  s tre s s e s  o n  a  p la n e  

in c lin e d  a t     to  B C  in  th e  o r ig in a l s tre s s  s y s te m .  

 

N .B . -  S in g le  a n g le  B C P Q  is  2   o n  M o h r 's  c irc le  a n d  n o t   ,  it  is  e v id e n t th a t a n g le s  

a re  d o u b le d  o n  M o h r 's  c irc le .  T h is  is  th e  o n ly  d if fe re n c e , h o w e v e r,  a s  th e y  a re  

m e a s u re d  in  th e  s a m e  d ire c t io n  a n d  f ro m  th e  s a m e  p la n e  in  b o th  f ig u re s  ( in  th is  c a s e  

c o u n te rc lo c k w is e  f ro m  

~ B C ). 



Further Notes on Mohr’s Circle

F u rth e r p o in ts  to  n o te  a re :  

(1 )  T h e  d ire c t s tre s s  is  a  m a x im u m  w h e n  Q  is  a t  M ,  i.e .  O M  is  th e  le n g th  re p re s e n t in g  

th e  m a x im u m  p r in c ip a l s tre s s   
1

 a n d  2 1   g iv e s  th e  a n g le  o f  th e  p la n e   1   f ro m  

B C .  S im ila r ly ,   O L  is  th e  o th e r p r in c ip a l s tre s s .  

(2 )  T h e  m a x im u m  s h e a r s tre s s  is  g iv e n  b y  th e  h ig h e s t p o in t o n  th e  c irc le  a n d  is  

re p re s e n te d  b y  th e  ra d iu s  o f  th e  c irc le .  T h is  fo llo w s  s in c e  s h e a r  s tre s s e s  a n d  

c o m p le m e n ta ry  s h e a r s tre s s e s  h a v e  th e  s a m e  v a lu e ; th e re fo re  th e  c e n tre  o f th e  

c irc le  w ill a lw a y s  lie  o n  th e   1  a x is  m id w a y  b e tw e e n   
x y

a n d .  

(3 )  F ro m  th e  a b o v e  p o in t th e  d ire c t s tre s s  o n  th e  p la n e  o f  m a x im u m  s h e a r m u s t b e  

m id w a y  b e tw e e n   
x y

a n d .  



Further Notes on Mohr Circle Contd.

(4 ) T h e  s h e a r s tre s s  o n  th e  p r in c ip a l p la n e s  is  z e ro .  

(5 )  S in c e  th e  re s u lta n t o f  tw o  s tre s s e s  a t 9 0 °  c a n  b e  fo u n d  f ro m  th e  p a ra lle lo g ra m  o f  

v e c to rs  a s  th e  d ia g o n a l,  a s  s h o w n  in  F ig u re  b e lo w , th e  re s u lta n t s tre s s  o n  th e  

p la n e  a t    to  B C  is  g iv e n  b y  O Q  o n  M o h r 's  c irc le .  

 

                                   

 

                            R e s u lta n t s tre s s   r  o n  a n y  p la n e .  

 



Preference of Mohr Circle

 The graphical method of solution of complex stress
problems using Mohr's circle is a very powerful
technique since all the information relating to any
plane within the stressed element is contained in
the single construction.

 It thus provides a convenient and rapid means of
solution which is less prone to arithmetical errors
and is highly recommended.


